WILL REGULATORS CATCH THE DRIFT? NFFC V. EPA
AND BREATHING NEW LIFE INTO PESTICIDE REGULATION

BY

GEORGE KIMBRELL,* SYLVIA WU,** & AUDREY LEONARD***

In the past half-century, U.S. agriculture has become dramatically more industrialized, consolidated, and bifurcated between livestock and crop agriculture, resulting in significant negative environmental, health, and socioeconomic effects. One pillar propping up this unsustainable industrial model is heavy reliance on synthetic pesticides and fertilizers, chemical inputs necessary for large monoculture production. In the most recent twenty-first-century version of this ever-entrenching paradigm, pesticide companies sell a seed/pesticide cropping system, comprised of crops genetically engineered (GE) to resist multiple pesticides, allowing “over the top” spraying at new times of the year and in new ways. These crop systems have significantly increased the pesticide load on our foods and into our environment, creating huge externalized environmental and health costs.

Pesticides are toxic substances intended to harm or kill. Yet, stakeholders best characterize current federal pesticide regulation under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) not by its rigor but by its weaknesses and loopholes. The U.S. Environmental Protection Agency (EPA), charged with administering FIFRA, increasingly approves new uses and variations of pesticides without fully taking into account the

*Mr. Kimbrell is the legal director of the Center for Food Safety (CFS), a nationwide public interest organization whose mission is to empower people, support farmers, and protect the earth from the harmful impacts of industrial agriculture. Mr. Kimbrell was lead counsel for the petitioners in NFFC v. EPA, 960 F.3d 1120 (9th Cir. 2020), as well as counsel in the other CFS cases discussed throughout the article. This Article is based on a March 13, 2021 presentation given by Mr. Kimbrell at Lewis & Clark Law School for the Symposium Food for Thought: The Impact of Food Choices in a Changing Climate. Mr. Kimbrell is also an adjunct professor at Lewis & Clark Law School, where he teaches Food, Agriculture, and Environmental Law, including the law of pesticides.

**Ms. Wu is a senior attorney for CFS. Ms. Wu was counsel for the petitioners in NFFC v. EPA, as well as some of the other cases discussed throughout this Article.

*** Ms. Leonard is an attorney for CFS. The authors thank their colleagues at CFS, particularly Bill Freese, Amy van Saun, and Martha Crouch, as well as Stephanie Parent, senior attorney for Center for Biological Diversity and co-counsel in NFFC v. EPA.
consequences these chemical cocktails have on public health, farmers, and our most imperiled species. This includes conditionally approving pesticides despite lacking vital data showing their safety and limiting the scope of agency review when it is applied. When EPA chooses to bend to the whim of powerful agrochemical corporations instead of truly evaluating the potential risks, environmentalists, farmers, and farmworker groups often turn to the courts to challenge EPA’s pesticide approvals.

A recent case, National Family Farm Coalition v. EPA (NFFC), 960 F.3d 1120 (9th Cir. 2020), presented these issues in stark relief. Dicamba (3,6-dichloro-2-methoxybenzoic acid) is a broad-spectrum herbicide. Dicamba is an effective weed killer, but its toxicity is not limited to weeds. It can also kill many desirable broadleaf plants, bushes, and trees. And it has a well-known drawback: dicamba is volatile, moving easily off a field on which a farmer has sprayed it. As a result of its toxicity and its tendency to drift, dicamba has historically been limited to clearing fields of weeds, either before crops were planted or before newly planted crops emerged. This changed in 2016: despite scientists and farmers raising significant concerns, EPA conditionally registered new, over-the-top dicamba pesticide spraying as the “next generation” of pesticide-resistant cropping systems. That first-ever such approval led to 20 million more pounds of dicamba sprayed annually, a twenty-three-fold increase, across approximately 50 million acres at new times of the year and in novel ways.

EPA’s approval created a debacle that agronomists say is unprecedented in the history of U.S. agriculture: the spraying of massive amounts of dicamba resulted in millions of acres of crops, trees, and wild plants damaged by dicamba spray droplets drifting off-field during application; dicamba vapor clouds damaged vast fields from fencerow to fencerow; dicamba-laced water ran off sprayed fields; and even rainfall was contaminated in areas of intensive use. Millions of acres of off-field dicamba drift and runoff resulted in widespread destruction of crops, economic losses, social upheaval to rural communities, and harm to endangered species and other wildlife.

Environmentalists and farmers challenged the approval decision in 2016. After four years of litigation, in summer 2020, the U.S. Court of Appeals for the Ninth Circuit issued a detailed fifty-six-page opinion carefully analyzing the voluminous record evidence and holding that EPA violated FIFRA in no less than six ways, grounds upon which the Court then completely vacated the registration as unlawfully issued. The Court concluded that EPA violated FIFRA by substantially underestimating several important risks and costs, including the amount of dicamba sprayed, the number of injury reports, and the amount and costs of crop damage. The Court also held that EPA completely failed to consider and account for several
other costs, such as economic losses ensuing from anti-competitive, monopolistic effects of the registrations, as well as the social costs of strife and dissension in farming communities triggered by rampant off-target dicamba damage to neighbors’ crops. Finally, the Court held that EPA violated FIFRA by predicated its core conclusion that its approval would have no adverse economic and environmental effects on mitigation measures—in the form of weather-related use restrictions—that substantial record evidence demonstrated were so extreme that farmers could not both follow the mitigation measures and have any hope of controlling weeds. EPA failed to consider and analyze whether following those directions was possible in real-world farming conditions. All of these were precedential FIFRA holdings.

While the dicamba drift damage story is dramatic, EPA’s mistakes and unlawful regulatory approach were not singular; instead, they are emblematic of systemic, longstanding poor pesticide oversight. Make no mistake, the needed remedy is nothing short of a complete overhaul of EPA’s mission with regard to pesticides and, with it, modern, twenty-first-century legislation to address twenty-first-century agricultural challenges. However, in the absence of the political will for such changes, the NFFC precedent, and a few other important current and past cases, provide the chance to substantially improve pesticide regulation going forward and breathe some long-overdue and badly needed new life into its old statutory bones.

Part II of this Article provides a brief history of pesticides and modern industrial agriculture, its current iteration of crop systems engineered with resistance to multiple pesticides, and the adverse impacts of this pesticide-promoting system on health and the environment. Part III sets forth how pesticides are regulated under FIFRA, its implementing regulations, and the EPA modus operandi. It summarizes the many problems in the regulatory structure and implementation, including its limited scope, regulatory loopholes, lack of transparency, industry capture/bias, lack of enforcement, and limiting judicial interpretation. Part IV presents the case study of NFFC v. EPA and discusses the import of its holdings. Part V places the NFFC case in the broader context of developing pesticide litigation and law, and the legal and cultural battle for the future of our food. This Article concludes on a cautiously optimistic note, as NFFC and other similar cases may be the leading edge needed to create long-overdue improvements to pesticide regulation for the betterment of health and environmental protection.
I. INTRODUCTION ... 671
II. A VERY BRIEF HISTORY OF PESTICIDES AND MODERN INDUSTRIAL AGRICULTURE ... 672
III. THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE ACT (FIFRA) .. 677
 A. The FIFRA Framework .. 677
 B. Conditional Registrations and Registration Review 679
 C. Application of the Unreasonable Adverse Effect Standard 681
IV. CASE STUDY: THE DICAMBA ISSUE AND LITIGATION 686
 A. Dicamba and Drift Harm ... 687
 B. Chronological History ... 690
 1. “A Potential Disaster” ... 691
 2. 2016 Registration .. 693
 3. The 2017 Season: “We have never seen anything like this
 before . . . in our agricultural history.” 695
 4. The 2018 Growing Season ... 698
 5. The 2018 Registration Continuation 701
 6. The 2019 and 2020 Growing Seasons 701
 a. Tree Damage ... 703
 b. 2020 Injuries .. 705
 c. The Ninth Circuit’s Decision 706
 i. Satisfactory Data ... 707
 ii. Failure to Support Registration with Substantial
 Evidence ... 708
 iii. Substantially Understated Risks 708
 iv. Risks EPA Unlawfully Failed to Acknowledge and
 Consider ... 711
 v. Summary of Holdings and Remedy 715
 vi. Postscript ... 716
 vii. Dicamba 3 ... 718
V. PULLING BACK AND GOING FORWARD 720
 A. The Dicamba Decision: Lessons Learned 720
 B. Putting NFFC in Context .. 723
 1. Pollinator Stewardship Council v. EPA (Pollinator I) 723
 2. Natural Resources Defense Council/Center for Food Safety v. EPA (Nanosilver) .. 724
 3. National Family Farm Coalition v. EPA (Enlist Duo) 726
 C. The Next Chapter: Ongoing FIFRA Battlegrounds 729
 D. Pesticide Litigation Outside of FIFRA 731
 1. Endangered Species Act .. 732
 2. State Product Liability Claims 737
VI. CONCLUSION .. 741
I. INTRODUCTION

On a muggy day in August 2017, a Missouri farmer looked out across his fifty-eight-acre soybean field, arms folded, and sighed. What was shaping up to be one of his most productive plots was now full of plants with shriveled leaves, curled upward like little cups. It was an unmistakable pattern of destruction with which he was all too familiar: the herbicide dicamba. His field, adjacent to his own cattle pastures and a dirt road, shared one side with a neighboring farmer’s soybean field. He recalled seeing his neighbor spray his crops recently and noticed the damaged plants were on the side closer to his neighbor’s land, a strong sign that dicamba had drifted onto his field.

He bent down to examine the leaves, took a picture with his phone, and thought about what to do next. He knew about the new “GE” soybean seeds on the market, genetically engineered to be resistant to yet another herbicide, the latest new techno-fix, now that the weeds had all become resistant to Roundup, their old standby weed killer. He deliberately bought conventional seeds, not the patented ones engineered to resist the powerful herbicide that he purposefully avoided spraying in his own fields, so that he could grow his own seeds for replanting, as he and his forefathers had done. But now he might have no choice: suffer more losses, stop planting the fields hit by drift, or give in and buy the damned GE seeds purely to defend himself from damage from his neighbors.

This was not what the fourth-generation farmer had in mind for the future of the land his father bought with help from the G.I. Bill in 1948. And neither he nor his wife could have imagined something like this creating such tensions between them and their neighbors, arguments about who caused this damage and why it kept happening, leaving hard feelings and ill-will behind. He had heard how impossible it was to follow the lengthy, complex use directions, even if farmers tried their best to avoid drift, as he knew his neighbor had. Don’t spray if the wind is blowing in a certain direction, or if it is above or below a certain speed, or if it is going to rain within twenty-four hours, and on and on. Had whoever wrote these instructions ever been to a real Midwestern field in summer?

Unfortunately, versions of this story unfolded thousands of times over, from Arizona and Texas, to the farmer’s home in Missouri and nearby Arkansas, up to Iowa, Nebraska and Minnesota, over to Tennessee and Illinois, and more. Soybean growers reported much of the dicamba damage, which often hammered their crops multiple times in a single season, but it was by no means limited to them. Because this herbicide is an equal opportunity destroyer—it damages just about any plant that produces a flower—many others had tales to tell. Fruit orchards and vineyards were injured, some devastated, organic vegetable farms and gardens torched. Millions of acres in all, waves of damage unlike any ever seen in the history of U.S. agriculture. The scope of

1. Adapted from Declaration of Darvin Bentlage at A093–A100, Nat’l Fam. Farm Coal. v. U.S. Env’t Prot. Agency (NFFC), 960 F.3d 1120 (9th Cir. 2020).
damages caused by dicamba boggled the farmer’s mind. At what costs, he thought? Money, sure. But livelihoods. The loss of his freedom to farm, to decide what he grows. And in and beyond farms? Beekeepers across the country saw honey production plummet thanks to dicamba’s suppression of flowering plants. Millions of trees damaged, in nature reserves, along rural roadways, in peoples’ yards. In some farming towns, it is difficult to find a tree not affected by this potent plant killer. And broader harm to flora and fauna, plants, birds, insects, and other common and imperiled creatures whose plant-based natural habitats are so disrupted by the damage dicamba has wrought. How did we get to this point, he thought, where such devastation has become just another fact of life? Why did we?

II. A VERY BRIEF HISTORY OF PESTICIDES AND MODERN INDUSTRIAL AGRICULTURE

Industrial agriculture as we know it today is a relatively recent development—a blip on the radar compared to humans’ 12,000-year history of agricultural cultivation. Many of the key developments transforming agriculture into its current industrial mode, especially prevalent in rich nations, happened in the past sixty years. The second half of the twentieth century brought the so-called “Green Revolution,” which promoted the use of new hybrid seeds and the many inputs—synthetic fertilizers, irrigation, insecticides, herbicides—they required to achieve their potential, as well as relentless mechanization and other technological changes. Its start coincided with World War II when a litany of new chemicals were developed as poisons intended for chemical warfare. After the war ended, the chemical manufacturing industry needed a new purpose for these chemicals and ultimately found one in our food system. Thus, along with fossil fuel-dependent mechanical technologies and government policies subsidizing broad-scale commodity crops like corn and soy for animal feed, pesticides quickly became a core pillar of the new age of industrial agriculture. Indeed, propped up by this heavy reliance on pesticides and fertilizers, farms grew larger and more specialized, with steadily expanding monocultures displacing farm animals, which were consigned to confined animal feeding operations.

4 Id.

5 Id.

6 Id.

7 Id. at 35–36.

8 Id. at 38.
solution to replenish the soil in crop-diversified, livestock integrated, closed-loop farms, manure later became a form of hazardous waste, and in the name of specialization, two separate incomplete systems were formed, both creating pollution.9 Presto: modern industrial agriculture was born.

Pesticide spraying grew exponentially to keep up with the demands of large-scale farming, benefiting from the development of World War II synthetic chemical insecticides.10 One of these was the now-infamous DDT.11 DDT was effective for long-term pest control because of its persistence in the environment.12 In 1962, American marine biologist, conservationist, and author Rachel Carson, regarded by many as the mother of the environmental movement, published \textit{Silent Spring}, providing a vivid warning of the current (and future) ecological consequences of indiscriminate pesticide use.13 Shortly thereafter, DDT was banned, Congress created the Environmental Protection Agency (EPA), and enacted many of today’s fundamental environmental statutes for it to oversee.14 These statutes included a complete overhaul of the pesticide law, the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA).15

Yet environmental and health damage from pesticides has continued and increased. Because pesticides are designed to kill living organisms, it is unsurprising that pesticide poisoning is implicated in twenty-four percent of U.S. species decline.16 Countless mammals, birds, fish, and other wildlife are exposed to these toxins from direct spraying, consuming contaminated prey, and drinking contaminated water.17 These biocides are ubiquitous in our nation’s waterways from both runoff and spray drift.18 Of particular note are the documented effects of pesticides on bees,
which play a vital pollination role in both nature and agriculture.19 Beyond concerns about acute toxicity, we know that pesticides have chronic effects on lifespan, physiology, reproduction, and behavior of non-target organisms, including humans.20 Farmworkers and farmers are on the front lines of exposure to agricultural chemicals and suffer from neurological problems, birth defects, and various types of cancer as a direct result.21 This creates an enormous equity issue: those who are most vulnerable face the greatest risks as farmworkers often lack access to healthcare and fear workplace retaliation for reporting occupational exposure to pesticides.22

Pesticides alone are only half of the modern story. These environmental and human health harms have been exacerbated since the mid-1990s because of the large-scale planting of GE commodity crops specifically engineered to withstand the additional spraying of plant-killing pesticides (also known as herbicides) over a longer period of time.23 The overwhelming majority of commercial GE crops are genetically engineered by pesticide companies, such as Monsanto (recently acquired by Bayer),24 Syngenta (acquired by ChemChina),25 and Corteva (the merged agricultural divisions of Dow and DuPont),26 to withstand the application of herbicides they also sell.27 Consequently, these GE crops

19 Angelo & Hennes, supra note 3, at 41; Jennifer Hopwood et al., How Neonicotinoids Can Kill Bees, at v (2d ed. 2016), https://perma.cc/P86C-FKRH; see also Yijia Li et al., Neonicotinoids and Decline in Bird Biodiversity in the United States, 3 Nature Sustainability 1027, 1027 (2020) (“Numerous laboratory and field studies have confirmed substantial negative impacts of neonicotinoid insecticides on honeybees [and] wild bees.”).
20 Angelo & Hennes, supra note 3, at 41–42.
23 See David A. Mortensen et al., Navigating a Critical Juncture for Sustainable Weed Management, 62 BIOSCIENCE 75, 75–76 (2012) (noting that the “[g]rowers were attracted to the flexibility and simplicity” of the GE commodity crop and “adopted the technology at an unprecedented rate”); Scott Kilman, Superweed Outbreak Triggers Arms Race, WALL STREET J. (June 4, 2010), https://perma.cc/TM6J-4Y6K.
have dramatically increased the overall pesticide output of American agriculture into our environment. Monsanto’s GE “Roundup Ready” crops, which are resistant to glyphosate, made glyphosate the most widely used pesticide in history, with roughly 280 million pounds applied annually in U.S. agriculture since 2012. Reliance on these pesticide-promoting GE crop systems has caused a number of harms, including widespread pollution of our waterways and ecosystems, degradation of the habitat of beneficial insects such as pollinators, and harm to soil health. And, as discussed in the following paragraph, newer GE crop varieties have increased the use of older pesticides such as dicamba and 2,4-D.

The overuse of pesticides is a related problem. Monsanto told farmers they could rely entirely on Roundup without weeds becoming resistant to glyphosate, contrary to weed science experts’ warnings. But, similar to antibiotic overuse, Roundup overuse generated an epidemic of glyphosate-resistant “superweeds,” now infesting an estimated 120 million acres of U.S. cropland. These weeds have flourished, infesting farm fields and roadsides, complicating weed control for farmers, and leading to the use of more—and increasingly toxic—pesticides. This set

29 See generally Ctr. for Food Safety v. Vilsack, 718 F.3d 829, 841 (9th Cir. 2013) (discussing the pesticidal harms of these crop systems in the context of “Roundup Ready” alfalfa).
33 Robert J. Kremer, Soil and Environmental Health After Twenty Years of Intensive Use of Glyphosate, 6 ADVANCES IN PLANTS & AGRIC. RES., 122, 122–23 (2017).
36 Antibiotic Resistance, WORLD HEALTH ORG. (July 2020), https://perma.cc/XP93-TG5D.
38 Mortensen et al., supra note 23, at 76; Kilman, supra note 23.
the stage for the current situation: the “next generation” of GE seeds, the pesticide industry’s “solution” to the problem it created.39 Their new business model is to engineer commodity crops with resistance to older, more toxic pesticides like 2,4-D, dicamba, imidazolinones, and others, often in combination.40 These multiple, “stacked” herbicide-resistant crops continue the pesticide treadmill of spraying more and more toxic cocktails. Yet, there is no panacea. Pesticide companies touted their products’ ability to kill glyphosate-resistant weeds, but after just a few seasons of use, weeds have already begun developing resistance to dicamba, making them more intractable, as many experts predicted.41 In truth, they will foster more resistant weeds and perpetuate the toxic cycle of increased pesticide use in response.

Now, we are facing a new crop of public health and environmental harms from pesticides, as the American agricultural system is fully plunged in this “next generation” cycle of GE seeds and pesticide reliance.42 As farmers plant more and more acres of GE seed, to be sprayed with more pesticide cocktail mixtures, wild pollinators and the flowering plants they depend upon face increasingly existential threats.43 Threatened and endangered species are relentlessly subject to harm from the use of EPA-sanctioned pesticides, even while under the supposed protection of the Endangered Species Act (ESA).44 In a 2020 evaluation, EPA itself found that ninety-three percent of endangered and threatened species exposed to the nation’s most commonly used pesticide, glyphosate, will likely experience adverse effects that could jeopardize their very existence.45 At a time when endangered species are already facing incredible habitat loss due to human development and the climate crisis, toxic pesticide exposures could easily be the final blow for any of these imperiled species.

39 Kilman, supra note 23.
40 Id.
42 Minan & Frech, supra note 18, at 117.
III. The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)

Currently, there are over 18,000 pesticide formulations sold in the U.S. For a pesticide to be distributed or sold in the U.S., it must first be registered and labeled by EPA under FIFRA. Since its original enactment, Congress has amended FIFRA to improve EPA’s oversight of pesticide safety. Nonetheless, FIFRA still leans heavily toward a system of registration in favor of expeditious approval of pesticides. Over the years, EPA has also exercised its regulatory discretion to create several loopholes, resulting in pesticides being approved for widespread use without the agency analyzing the necessary safety data.

Congress first enacted FIFRA in 1947, giving the Secretary of Agriculture (USDA) authority to regulate “economic poisons” (pesticides) in interstate commerce, but the statute did not contain any environmental or safety standards for pesticides. The 1947 FIFRA centered on labeling and ensuring that pesticides were not adulterated, and allowed registration based on a description of the chemical’s composition and what the chemical claimed to achieve. That version remained in place until 1972 when Congress transferred authority to implement FIFRA from the USDA to the newly created EPA and overhauled the statute with provisions aimed at better protecting human health and the environment. Against the backdrop of the country’s new awareness of the risks and consequences of unfettered pesticide use through new knowledge about DDT and the warnings of Silent Spring, the 1972 FIFRA amendments provide the framework for pesticide registration and data requirements that we use today.

A. The FIFRA Framework

FIFRA adopts a broad definition of pesticide that includes any chemical meant to control or kill any pest or plant. The main mechanism used to regulate pesticides is known as registration. Before any

48 Merrell v. Thomas, 807 F.2d 776, 778 (9th Cir. 1986).
52 Angelo, supra note 50, at 130.
53 Id.
54 Schierow & Esworthy, supra note 46, at 2–3.
56 Id. § 136a(a).
pesticide can be sold or used in the U.S., EPA must register the pesticide: provide a license that establishes the terms and conditions under which the pesticide may be lawfully sold, distributed, and used within the U.S.57 The terms and conditions of the registration include exactly what product may be sold and used, and for what specific use(s), and how it may be used (e.g., what crops it may be sprayed on and how).58

In registering pesticides, the core baseline statutory standard EPA applies is the “unreasonable adverse effects” standard.59 EPA may deny an application for registration when “necessary to prevent unreasonable adverse effects on the environment.”60 FIFRA defines “unreasonable adverse effects on the environment” to mean “any unreasonable risk to man or the environment, taking into account the economic, social, and environmental costs and benefits of the use of any pesticide.”61 EPA and the courts have interpreted FIFRA’s “unreasonable adverse effect” standard to require EPA to conduct a cost-benefit analysis “to ensure that there is no unreasonable risk created for people or the environment from a pesticide.”62 Thus, EPA balances the claimed economic and social benefits against the pesticide’s potential costs or harms. Congress anticipated that EPA’s careful balancing of costs and benefits would “take every relevant factor that the [agency] can conceive of into account.”63

One difference between FIFRA and other environmental laws intended to control pollution, such as the Clean Water Act,64 is that FIFRA regulates by product label rather than direct-use restrictions. That is to say, “the label is the law” and EPA’s ability to regulate pesticide use through FIFRA is limited to establishing label restrictions, such as application instructions or restrictions for use on only certain types of crops.65 Generic label warnings may be difficult to translate into real-world application practices, while complex label restrictions put the onus on the applicator rather than on the registrant to prove that the pesticide is safe.

Congress tasked EPA with implementing the specific data that an applicant must submit to support this no “unreasonable adverse effect”

\begin{itemize}
\item 57 Id. § 136a(c).
\item 58 40 C.F.R. § 152.115 (2019); 40 C.F.R. § 156.10 (2019).
\item 60 7 U.S.C. § 136a(a).
\item 61 Id. § 136(bb).
\item 62 Pollinator Stewardship Council v. U.S. Env’t Prot. Agency (Pollinator I), 806 F.3d 520, 522–23 (9th Cir. 2015) (quoting 7 U.S.C. § 136(bb) (2018)).
\item 63 S. REP. NO. 92-838, at 10 (1972), \textit{reprinted in} 1972 U.S.C.C.A.N. 3,993, 4,032. Congress intended for EPA, among other relevant factors, to carefully consider “hazards to farm-workers, hazards to birds and animals and children yet unborn the need for food and clothing and forest products, forest and grassland cover to keep the rain where it falls, prevent floods, provide clear water aesthetic values, the beauty and inspiration of nature, the comfort and health of man.” \textit{Id}.
\item 64 33 U.S.C. §§ 1251–1388 (2018).
\item 65 40 C.F.R. § 156.10 (2019).
\end{itemize}
finding. To register a new pesticide, a manufacturer must submit an application describing how the pesticide will be used, its claimed benefits, the ingredients, and a description (and results) of all tests and studies performed on the product’s health, safety, and environmental effects.

FIFRA is the main regulatory hurdle that a pesticide must clear. While all federal agencies are subject to the requirements of the National Environmental Policy Act (NEPA) when taking federal action, in Merrell v. Thomas, the Ninth Circuit held that EPA is not required to comply with NEPA when approving pesticide registrations under FIFRA because FIFRA’s unreasonable adverse effect standard includes consideration of environmental impact and thus, FIFRA serves as a functional equivalent to NEPA. This may be true as a textual matter, because FIFRA’s “unreasonable adverse effect” definition broadly encompasses “any unreasonable risk to man or the environment, taking into account the economic, social, and environmental costs and benefits of the use of any pesticide.” However, because FIFRA is intended to authorize the use of chemicals that, by their nature, will harm living organisms and the environment, using a risk-benefit standard means that for each environmental risk associated with a pesticide registration, EPA looks to answer the question of how much risk is reasonable. This method of analysis is distinct from NEPA, where a federal agency is focused solely on analyzing the environmental impacts of its proposed action.

B. Conditional Registrations and Registration Review

FIFRA requires pre-market data and approval before a pesticide may be used. However, Congress amended FIFRA in 1978 to authorize EPA to
issue what is now commonly referred to as “conditional registrations” of pesticides (registrations without all the required data, in contrast to an unconditional registration, which contains all the required data) to address the delay and backlog in approving new pesticide products made using old chemicals under the more stringent data standards set by the 1972 FIFRA amendment.75 Per the 1978 amendments, EPA may nonetheless grant a temporary “conditional” registration for a pesticide that is lacking all required health and safety data but only under three specific circumstances: 1) for pesticide uses that are identical or similar to a previously-registered pesticide, commonly referred to as “me-too” registrations;76 2) for additional uses of a previously-registered pesticide;77 or 3) for pesticides with new active ingredients if certain conditions are met.78

For the first category, EPA may conditionally register a proposed pesticide product if EPA determines that “the pesticide and proposed use are identical or substantially similar to any currently registered pesticide and use thereof, or differ[s] only in ways that would not significantly increase the risk of unreasonable adverse effects on the environment.”79 For the second category, subject to certain exceptions, EPA may also conditionally register additional uses of an already-registered pesticide if EPA finds that the agency has “(i)... satisfactory data pertaining to the proposed additional use, and (ii) amending the registration in the manner proposed by the applicant would not significantly increase the risk of any unreasonable adverse effect on the environment.”80 This is the category of our case study, \textit{NFFC v. EPA}, discussed in Part IV. For the third category, EPA may conditionally register a pesticide containing a new active ingredient for which required data is otherwise lacking for a set period of time but only if it finds that 1) “use of the pesticide is in the public interest,” 2) the required data is “lacking because a period reasonably sufficient for generation of the data has not elapsed since the Administrator first imposed the data requirement,” and 3) the “use of the pesticide during [the conditional registration] period will not cause any unreasonable adverse effect on the environment.”81

The 1978 amendment also allowed EPA to require “additional data” to support the continued registrations of existing pesticide registrations.82 EPA codified this authority to require reassessment every fifteen years, in a process referred to as registration review, to make sure that all

76 7 U.S.C. § 136a(c)(7)(A).

77 \textit{Id.} § 136a(c)(7)(B).

78 \textit{Id.} § 136a(c)(7)(C).

79 \textit{Id.} § 136a(c)(7)(A).

80 \textit{Id.} § 136a(c)(7)(B).

81 \textit{Id.} § 136a(c)(7)(C).

82 \textit{Id.} § 136a(c)(2)(B).
registered pesticides continue to meet FIFRA’s no “unreasonable adverse effects” standard using the latest science and data. In practice, however, EPA has failed to meet the fifteen-year registration review mark, instead, allowing these lapsed pesticides to remain in use, in many cases despite overwhelming evidence demonstrating their harm to human health and the environment.

C. Application of the Unreasonable Adverse Effect Standard

Accordingly, whether it is unconditional registration, conditional registration, or registration review, the standard for EPA’s pesticide decision-making centers around some form of risk-benefit analysis, requiring EPA to make a finding that the registration will not have an unreasonable adverse effect, or no significant increase in the risk of any unreasonable adverse effect, on the environment. This risk-benefit review standard sets FIFRA apart from other environmental statutes. While most environmental laws strive to prevent harm to the environment and living organisms, FIFRA is designed to approve the release of pesticides that are intended to kill or harm living organisms and that, by their nature, carry unintended risks to mankind and the environment.

Even though the pesticide industry often claims that all registered pesticides have been thoroughly assessed under FIFRA and are therefore safe for the environment, the reality is that EPA often registers pesticides without giving due consideration to their potential environmental and human health effects.

Within FIFRA’s registration framework, EPA has abused its discretion and further weakened the “risks,” or costs side of the “unreasonable adverse effect” analysis, when it allows pesticides to be used without the requisite safety data required for unconditional registration. EPA overuses the conditional registration process. Congress intended the conditional registration process to be the exception of pesticide registration, not the norm. Proponents of the conditional registration process explained that EPA was not to use the process “to allow the indiscriminate registration of any pesticide after an application

85 Angelo, supra note 50, at 138.
86 See supra notes 82–85 and accompanying text (describing EPA’s over-reliance on conditional registration); see 7 U.S.C. § 136a(c)(7)(C) (showing an example of the overbreadth of conditional registration).
for registration is filed, but before all the safety data is submitted.”

Similarly, the EPA Administrator at the time testified in Congress that conditional registration would be used for “rare” situations—for example, to prevent a serious pest outbreak.

In practice, however, this exception has become the rule; the majority of EPA pesticide registrations now appear to be conditional registrations and with almost no accountability to ensure that the registrants of these conditionally registered pesticides timely submit the missing data. A watchdog investigation found that as of August 2010, more than 11,000—about sixty-five percent—of the 16,000-plus currently active pesticide products have been conditionally registered and allowed on the market. The U.S. Government Accountability Office (GAO) conducted an examination of EPA’s use of conditional registrations and confirmed that EPA’s own internal review found roughly sixty-nine percent of the 16,156 active pesticide registrations were conditionally registered, though the number could have been overstated since the GAO report also revealed that EPA did not have an accurate database for tracking conditional registrations. The GAO report also found significant issues relating to EPA’s management of conditional registrations. The GAO found that EPA did not have a system in place to track whether registrants submitted the required additional data within the timeframe set by EPA. Nor did EPA have a system in place to timely review any additional data that were submitted. Crucially, in addition to the lack of systemic tracking of conditional registrations, the GAO concluded that EPA has conditionally approved registrations for pesticides that did not meet the limited statutory criteria set forth for conditional registrations. The GAO report also criticized the lack of public transparency and information that EPA has provided regarding conditional registrations. Since the publication of the GAO report, EPA has stated it is taking steps to improve its

87 S. REP. NO. 95-334, at 10 (1977); see also 123 CONG. REC. 25,706 (daily ed. July 29, 1977) (statement of Sen. Leahy) (“I want to stress this use of conditional registration would only be in exceptional cases.”).

89 See U.S. GOV’T ACCOUNTABILITY OFFICE, GAO-13-145, PESTICIDES: EPA SHOULD TAKE STEPS TO IMPROVE ITS OVERSIGHT OF CONDITIONAL REGISTRATIONS 3 (2013) (“EPA’s Office of Pesticide Programs Information Network (OPPIN) data system showed that conditional registrations represented the majority of active registrations.”).

90 JENNIFER SASS & MAI WU, SUPERFICIAL SAFEGUARDS: MOST PESTICIDES ARE APPROVED BY FLAWED EPA PROCESS, NATIONAL RESOURCE DEFENSE COUNCIL 2 (2013), https://perma.cc/Q5BY-23FM.

91 See U.S. GOV’T ACCOUNTABILITY OFFICE, supra note 89, at 13.

92 Id. at 19.

93 Id.

94 Id. at 37.

95 Id. at 38–40.
internal tracking as well as making available to the public the status of conditional registrations of new active ingredients.96

In addition to conditional registrations, EPA has also relied on its authority to grant emergency local use exemptions under Section 18 of FIFRA to authorize uses of pesticides without making the requisite no “unreasonable adverse effect” finding.97 Section 18 of FIFRA grants EPA the discretion to exempt any state and federal agencies from FIFRA’s registration requirements, so long as EPA “determines that emergency conditions exist which require such exemption.”98 The scope of this exemption power is broad: EPA’s regulations authorize the agency to grant an exemption “in an emergency condition to avert” anything from significant economic loss,99 to control “any pest that is an invasive species, or is otherwise new to . . . the United States”100 or “a[ny] pest that will cause a significant risk to human health,”101 and finally a catch-all exemption to avoid a crisis.102 In recent years, EPA has repeatedly relied on the catch-all crisis exemption to authorize agricultural uses of pesticides for use on major crops even though those uses have not been vetted through the FIFRA registration process, meaning that no “unreasonable adverse effect” finding has been made.103 The use of the FIFRA Section 18 exemptions does not end with just pesticide uses that EPA has yet to review. In the case of EPA’s sulfoxaflor pesticide registration discussed \textit{infra},104 after the Ninth Circuit held that EPA lacked substantial evidence to support its conclusion that sulfoxaflor would not result in unreasonable adverse effects on the environment and vacated the unconditional registration, EPA issued several emergency use exemptions to allow sulfoxaflor uses to continue while the registrant generated the additional studies called for by the Ninth Circuit ruling.105

99 40 C.F.R. § 166.2(a) (2019).

100 Id. § 166.2(b).

101 Id. § 166.2(c).

102 Id. § 166.2(d).

103 See, e.g., \textit{Pesticide Emergency Exemptions}, 86 Fed. Reg. 8782, 8783 (Feb. 9, 2021) (exempting numerous state entities from the FIFRA registration process due to various emergencies; see also Clark, \textit{supra} note 97, at 472 (describing this loophole as one which “you could drive the proverbial farm truck through”).

104 See \textit{infra} text accompanying notes 401–406.

Outside of these exemptions, more fundamentally, as shown by the decisions discussed infra, even when faced with an application for unconditional registration, EPA often ignores its duty to risk-benefit assessment by relying on generalized benefit claims without any actual weighing of the two factors.\footnote{See infra Part II.B.6.c.} On the benefits side of the scale, FIFRA allows EPA to waive data requirements regarding efficacy, which EPA has done by rule, essentially creating an assumption that economic or social benefits of any given pesticide.\footnote{40 C.F.R. § 158.45 (2019).} As a result, when approving new pesticide uses, EPA typically only offers generalized, unsubstantiated benefit claims—such as stating that a new active ingredient is beneficial because it provides a “new mode of action” for controlling pests, and therefore may increase agricultural yields by reducing pests, without making any attempt to quantify just how much the claimed benefit actually may be—such that the agency can then compare the benefits against potential risks.\footnote{E.g., U.S. Env’t Prot. Agency, Over-the-Top DICamba Products for Genetically Modified Cotton and Soybeans: Benefits and Impacts 11–13 (Oct. 31, 2018), https://perma.cc/P87A-2FAV [hereinafter Over-the-Top DICamba Products]; e.g., U.S. Env’t Prot. Agency, Review of Benefits As Described by the Registrant of Enlist Duo 2,4-D Choline on Herbicide Resistant Enlist Cotton to Improve the Performance of Current Weed Control Systems and Provide New Weed Resistance Management Options 5, 7 (Oct. 28, 2016), https://perma.cc/847Q-HXBY.} And on the risks side of the scale, even though the definition of “unreasonable adverse effect” includes “the economic, social, and environmental costs,”\footnote{7 U.S.C. § 136(bb) (2018).} EPA often foregoes such analysis and instead claims that the costs are unquantifiable or minimizes their effect without any data or quantification, although the recent cases have something to say about that.\footnote{See infra text accompanying notes 215–216.}

Fundamentally, EPA’s pesticide registration analysis—whether conditional or unconditional—also suffers from EPA’s intentionally narrow scope of analysis to just the pesticide active ingredient that a registrant seeks to register, rather than the whole pesticide formulation. A pesticide formulation is a mixture of one or more active ingredients—the pesticide’s active ingredients, along with other chemicals, statutorily defined and so-called “inert” ingredients.\footnote{National Research Council, Committee on Ecological Risk Assessment Under FIFRA and ESA, Assessing Risks to Endangered and Threatened Species from Pesticides 65 (2013). The term inert is used to distinguish active ingredients from “chemical[s] that [are] not classified as an active ingredient.” Id. at 66.} The mixture of the pesticide active ingredients and inert ingredients is what makes up a pesticide that is sold and used in the marketplace.\footnote{Id. at 65.} Though inerts may or may not have a direct effect on the target species, they can be toxic, biologically
2021] CATCH THE DRIFT 685

active, and potentially hazardous. A growing body of research indicates that a pesticide’s active ingredients in combination with its inert and adjuvant ingredients can increase pesticide toxicity, ecotoxicity, and exposure, both independently and through their synergistic effects. Nonetheless, in regulating and approving pesticide usage, EPA focuses its data requirements on active ingredients alone—and often only the new or dominant active ingredient—largely ignoring inerts and adjuvants as well as synergistic effects of the chemicals once combined. EPA’s insufficient safety assessment of pesticides endangers the health of the public and the environment as a whole. As a result, “[m]ost of the tests required to register a pesticide are performed with the active ingredient alone, not the full pesticide formulation.” Similarly, while farmers and pesticide applicators commonly mix different pesticides and apply them to the crops simultaneously, called “tank-mixing,” EPA does not require testing of common tank mixtures before registration or any cumulative or synergistic effects from them.

Finally, despite the unmistakable clarity of the environmental risks of pesticide spraying and the cognizable environmental costs to be considered by the agency in its process, EPA’s regulatory data requirements largely focus instead on estimating the human health effects from exposure to pesticides, while testing and data requirements for ecological and wildlife effects are much more limited. Even for the wildlife testing EPA does require, it only looks at acute toxicity and

113 Id. at 66; see also Christopher A. Mullin, Effects of ‘Inactive’ Ingredients on Bees, CURRENT OPINION IN INSECT SCI., Aug. 2015, at 194, 194 (“Numerous studies have found that pesticide [active ingredients] elicit very different physiological effects on non-target organisms when combined with their formulation ingredients.”).

115 NATIONAL RESEARCH COUNCIL, supra note 111, at 66.

116 Generally, EPA requires data on the toxicological significance of the active ingredients in pesticide products, but not necessarily of the whole formulas. See 40 C.F.R. § 158.130(e) (2019) (hazards to nontarget species); see also id. § 158.500 (toxicology data requirements); see also id. § 158.630 (data requirements for terrestrial and aquatic non-target organisms); see generally id. § 158.320 (product identity and composition).

117 See Cox & Surgan, supra note 114, at 1803–04 (“Of the 20 toxicologic tests required (or conditionally required) to register a pesticide in the United States, only 7 short-term acute toxicity tests use the pesticide formulation; the rest are done with only the active ingredient. The medium- and long-term toxicity tests that explore end points of significant concern (cancer, reproductive problems, and genetic damage, for example) are conducted with the active ingredient alone. The requirements for other types of tests are similar. Only half of the required (or conditionally required) tests of environmental fate use the formulated product, as do only a quarter of the tests for effects on wildlife and nontarget plants.”).

119 Angelo, supra note 50, at 131.
generally does not require data on behavioral, neurological, reproductive, or other chronic effects.120 And as discussed above, even for the data that is required, the data reviewed is cabined to just the active ingredient in isolation, not the actual product formulation being approved and to which wildlife will be exposed.

Thus, despite the broad definition of risks encompassed within FIFRA’s unreasonable adverse effect standard and the Congressional intent to pass amendments in 1972 to make FIFRA a comprehensive environmental protection statute, EPA has not applied it as such. Rather, its approach has left gaps in the rigor and scope of the data applied; weaknesses in the legal threshold applied; lapses in the ways it has analyzed or considered (or failed to consider entirely) costs of registration; failings in transparency and accountability; and even circumventing that key data be submitted and analyzed at all before allowing registration. The reality is that EPA has relied on courts’ tendency to defer to the agency’s scientific expertise121 to sidestep its duty to conduct a risk-benefit analysis of every pesticide before allowing its use in U.S. agriculture.

IV. CASE STUDY: THE DICAMBA ISSUE AND LITIGATION

Dicamba is an herbicide in the benzoic acid family used for selective control of emerged broadleaf weeds.122 It is extremely toxic to all broadleaf plants, including conventional cotton and soybean.123 It damages or kills fruiting vegetables, fruit trees, grapes, beans, peas, potatoes, tobacco, squash-family plants, ornamentals—essentially any flowering plant.124 Dicamba also damages or kills many species of large trees, including oaks, elms, and maples.125 Dicamba damage is easily identified by its signature marker: “leaf cupping.”126

120 Id. at 132.
121 See, e.g., Kleppe v. Sierra Club, 427 U.S. 390, 412 (1976) (“Resolving these issues requires a high level of technical expertise and is properly left to the informed discretion of the responsible federal agencies.”).

124 Id.

Consequently, EPA previously restricted dicamba’s soybean and cotton uses to before planting (pre-plant) to clear a field of early-season weeds and to season’s end to control late-season weeds (pre-harvest in soybeans, postharvest in cotton); EPA had never before allowed direct, over-the-top application to these crops during the critical growing seasons of spring and summer. However, in 2005, Monsanto (now Bayer) announced the development of GE soybean and cotton that altered the use pattern of dicamba. Monsanto licensed the gene that, when genetically engineered into soybean and cotton crops, made them resistant to dicamba. Monsanto and BASF developed dicamba herbicides for use on these engineered crops.

A. Dicamba and Drift Harm

Several dicamba properties render it much more likely than other herbicides to cause widespread damage to plants and other organisms, both on treated fields and in surrounding areas. First, as described above, dicamba is highly toxic to an extremely broad range of flowering plants, including trees, shrubs, soybeans and cotton, as well as nearly all vegetables and fruit crops. Second, dicamba is also very potent, such that vanishingly small amounts can cause considerable damage. And third, while the majority of herbicides pose a drift threat only when they are being applied, dicamba is extremely volatile and is known to volatilize from soil and plant surfaces days after the initial application, forming vapor clouds that drift and damage plants at great distances and in all directions from the application site.

Dicamba contaminates the environment via spray drift, vapor drift, in rainfall, and in runoff from dicamba-treated fields. Such pollution has ramped up dramatically with the over-the-top spraying dicamba...
registrations due to increased use over a longer season.\(^{134}\) Spray drift, also called particle drift, occurs during application.\(^{135}\) As a dicamba-spray solution is forced under pressure through a nozzle, spray droplets are formed.\(^{136}\) Small droplets remain aloft for considerable periods of time and are carried by even moderate winds to damage crops or wild plants in neighboring fields.\(^{137}\) Spray drift damage increases with wind speed and is characterized by injuries that decline in severity with distance from the treated field.\(^{138}\)

On the other hand, vapor drift arises from the volatilization of dicamba, that is, its conversion from liquid or solid form to vapor. Dicamba volatilizes during spray operations, but also up to several days after an application, as dicamba residues left on treated soil and plant surfaces evaporate.\(^{139}\) Vapor drift increases with temperature, and thus is far more common with late spring and summer over-the-top spraying of dicamba than with traditional pre-plant use.\(^{140}\) Vapor drift is also worse under still conditions, with little or no wind, which promote temperature inversions.\(^{141}\) Finally, vapor drift is characterized by broad-scale injuries that are uniform in severity, fence-row to fence-row.\(^{142}\)

The damaging effects of spray and vapor drift increase dramatically during a temperature inversion, an extremely common atmospheric condition in which cool air at the earth’s surface is trapped by warmer air above it.\(^{143}\) The trapped cool air accumulates a concentrated cloud of dicamba spray droplets and vapor, which is then easily moved by light winds to cause broad-scale injury to crops and plants near and far from application areas.\(^{144}\) Dicamba is also subject to atmospheric loading, where intensive spraying by many farmers in a localized area results in substantial clouds of airborne dicamba that can then, as with temperature inversions, move off-field to cause widespread damage.\(^{145}\) Dicamba can also damage off-field plants when rainfall washes it out of

\(^{135}\) Bradley, supra note 132.

\(^{136}\) See WOLF, supra note 133 (explaining how nozzle size impacts droplet size and drift).

\(^{137}\) Robin Booker, Dicamba Volatility Causes Anxiety as New Season Nears, WESTERN PRODUCER (May 3, 2018), https://perma.cc/3HHV-DDXX.

\(^{138}\) WOLF, supra note 133, at 2; Mark Loux & Bill Johnson, Ohio Soybeans: Dicamba Drift Injury Becoming More Evident, AgFax (July 12, 2017), https://perma.cc/SQE3-CXPM.

\(^{139}\) Booker, supra note 137; Bradley, supra note 132.

\(^{140}\) WOLF, supra note 133.

\(^{141}\) NFFC, 960 F.3d 1120, 1125 (9th Cir. 2020).

\(^{142}\) Bradley, supra note 132; Loux & Johnson, supra note 138.

\(^{143}\) Bradley, supra note 132.

\(^{144}\) Booker, supra note 137.

the atmosphere and brings it down to earth. Moreover, rainfall washes dicamba from the plant surfaces and soil of a treated field, resulting in dicamba-contaminated runoff water that can damage plants.

The environmental risks from dicamba use are numerous. Animals and plants, including threatened and endangered species, those in danger of extinction, may be exposed to dicamba via atmospheric loading (spray drift, volatilization), contamination of soils, and runoff from treated fields. Spray drift and volatilization of dicamba impacts vegetation near crop fields and also at a distance, impacting plants in many different habitats as well as the animals that consume and rely upon them and the larger ecosystem.

Mammals, birds, and insects are directly exposed to dicamba and its far more toxic breakdown product, 3,6-dichlorosalicylic acid (DCSA), through ingesting it in treated fields, through ingesting crop material that leaves the field via wind or runoff, and through consuming insects that have fed on crops contaminated with dicamba products. Bees and other pollinators are at risk from direct exposure to dicamba spray or vapor drift and by feeding on dicamba-sprayed crops and other plants exposed to dicamba. Importantly, dicamba spray and vapor drift has also impacted pollinators indirectly, far beyond the treated field, by suppressing the flowering plants they require for pollen and nectar. Dicamba enters water bodies via runoff and drift, where it has been frequently detected. Dicamba-laced runoff water can impact off-field plants for up to one week after application.

Dicamba also harms plants through its presence in rainwater. A recent study of twelve sites in Missouri during the 2019 season revealed

146 Emily Unglesbee, New 2,4-D and Dicamba Data: Four Things Missouri Scientists Learned about 2,4-D and Dicamba in 2020, PROGRESSIVE FARMER (Dec. 7, 2020), https://perma.cc/SRT6-GM48; B.D. Hill et al., Phenoxy Herbicides in Alberta Rainfall: Potential Effects on Sensitive Crops, 82 CAN. J. PLANT SCI. 481, 482 (2002).
149 Id.
150 Id.; EPA, DICAMBA DGA AND BAPMA SALTS, supra note 126, at 12–15, 28, 35–40 (finding that “in mammals, DCSA has similar acute toxicity as [its] parent dicamba, but is substantially (17x) more toxic on a chronic basis” and EPA assumed similar effects of DCSA on birds).
151 EPA, DICAMBA DGA AND BAPMA SALTS, supra note 126, at 42.
154 EPA, DICAMBA DGA AND BAPMA SALTS, supra note 126, at 297–98.
that, at some sites, dicamba remained detectable throughout the season. The detection of dicamba in rainwater directly correlated with adoption rates of dicamba-resistant crops; areas with higher adoption had more dicamba in rainwater. University of Missouri weed scientists determined that, in the sites located in the southeastern corner of Missouri, the amounts in rainwater were high enough to harm sensitive crops, especially with repeated exposure.

B. Chronological History

While dicamba has been sold in other forms since 1967, prior to EPA’s 2016 new use registration actions for dicamba, dicamba uses on soybeans and cotton were limited to pre-plant and pre-harvest applications in soybeans and pre-plant and post-harvest applications in cotton. Monsanto first sought registrations for new uses of dicamba on GE soy and cotton in 2010 and 2012, originally seeking registration of a different dicamba pesticide, M1691. Monsanto and BASF developed new dicamba products, while DuPont/Corteva obtained a license to market Monsanto’s product under a different name.

As shown in Figure 1, from 2012-2016, farmers applied, on average, 768,000 pounds of dicamba to soybeans and cotton, combined, each year. In just the first year of dicamba’s registration for over-the-top spraying, dicamba usage on these crops rose to nearly ten million pounds per year. The 2018-2020 saw further substantial increases. The thirteen million pounds applied to soybeans and nearly five million pounds sprayed on cotton represented a more than twenty-three-fold increase in the amount of dicamba sprayed on these crops in just the second year over-the-top spraying was permitted. The large volume of dicamba sprayed and the spraying later in the season when hot conditions exacerbated drift, had devastating consequences.

155 Unglesbee, supra note 146.
156 Id.
157 Id.
158 Dan Flynn, Herbicides Purchased for this Planting Season and Ready for the Field are Now Illegal, FOOD SAFETY NEWS (June 9, 2020), https://perma.cc/3T2F-9N7E.
159 EPA, 2018 DICAMBA REGISTRATION DECISION, supra note 122, at 5.
160 EPA, FINAL REGISTRATION OF DICAMBA, supra note 118, at 2–3.
162 See NFFC, 960 F.3d 1120, 1127 (9th Cir. 2020) (describing the use of OTT dicamba on soybeans and cotton between 2012-2016).
163 Id.
1. “A Potential Disaster”

According to discovery documents uncovered in subsequent civil litigation brought by peach farmers whose peach trees were damaged by dicamba drift, Monsanto knew of the serious drift threat posed by its dicamba-resistant crop system for more than a decade. The issue was extensively discussed in meetings of the company’s Dicamba Advisory

Council as far back as 2009.166 Monsanto and its advisors not only foresaw drift damage, but anticipated lawsuits (“when neighbors start suing each other”), and discussed possible measures to address it, such as an “indemnity fund for crop loss.”167 Rather than reconsider its dicamba project, however, Monsanto decided that the threat of dicamba drift damage could be exploited to market its seeds to soybean farmers who “do not perceive the value of Dicamba” for their own purposes.168 These farmers would be “educat[ed]” into buying dicamba-resistant soybean seeds to avoid drift damage arising from a neighbor’s use of dicamba (i.e. “protection from your neighbors”).169

In 2010, Monsanto officer John Soteres was developing arguments to “defend[] dicamba relative to drift and volatilization to nearby crops,” noting that Monsanto would need to address these issues not only with regulators, “but also potentially in the courts.”170 Monsanto received further warnings of the damaging effects its dicamba crop system would have in 2011. One of its employees wrote in a summary of academic surveys the company commissioned, “DON’T DO IT; expect lawsuits,”171 while Del Monte Foods called the new system a “potential disaster” in a 2011 letter.172 Agronomists studying dicamba drift also informed EPA that Monsanto’s system would likely harm off-field plants, affecting organisms that rely on those plants, including pollinators, via habitat loss.173 EPA was also aware that dicamba use would increase with resistant crops and that neighbors of dicamba users would plant resistant crops for self-defense.174

Unsurprisingly, Monsanto observed extensive dicamba drift damage in its own field trials. From 2012 to 2014, the company reported to EPA seventy-three off-target incidents that occurred during its testing of M1691, the precursor to the XtendiMax product that Monsanto first sought to register for over-the-top use.175 The Missouri Department of

166 Hettinger, supra note 145.
167 Plaintiff Exhibit PLTF-6, Bader Farms, Inc. v. Monsanto Co., No. 1:16-cv-00299-SNLJ (E.D. Mo. Apr. 2, 2019).
168 Id.
169 Id.; Hettinger, supra note 145.
171 Hettinger, supra note 145.
172 Plaintiff Exhibit PLTF-1140, Bader Farms, Inc. v. Monsanto, No. 1:16-cv-00299-SNLJ (E.D. Mo. June 20, 2019).
173 U.S. Env’t Prot. Agency, ECOLOGICAL RISK ASSESSMENT FOR DICAMBA AND ITS DEGRADATE, 3,6-DICHLOROSALICYLIC ACID (DCSA), FOR THE PROPOSED NEW USE ON DICAMBA-TOLERANT SOYBEAN (Mar. 8, 2011), https://perma.cc/G9QA-3MPK.
174 Id.
175 Petitioners’ Excerpts of Record Volume VII of IX, Nat’l Fam. Farm Coal. v. U.S. Env’t Prot. Agency, No. 19-70115 (9th Cir. 2020); see John Frank Knox, Sowing the Seeds of Controversy: What the Dicamba Debacle Reveals About the Modern Pesticide Registration Process and Why the EPA Must Act, 48 ENV’T L. 835, 857 (2018) (discussing Monsanto’s EPA registration process of XtendiMax, which contains the same active ingredient as the previously registered M1691).
Agriculture informed EPA of two incidents in 2013 and 2014, in which M1691 dicamba vapor caused drift damage to non-resistant soybeans at 2,800 feet and 2.2 miles, respectively, from treated fields of dicamba-resistant soy.\(^{176}\)

Instead of studying the issue further, Monsanto responded to EPA’s growing concern by halting its own field-testing of XtendiMax with VaporGrip Technology in 2015.\(^{177}\) Monsanto also prohibited trials by independent academics and expressed concerns to BASF about “how tightly BASF controls the release of data by the third parties.”\(^{178}\) EPA proposed only a small omnidirectional vapor drift buffer zone far smaller in width than the distances it knew dicamba vapor could travel, but subsequently dropped even this proposal.\(^{179}\)

In 2016, Monsanto elaborated upon its 2009 scheme of using protection from drift damage as a marketing strategy. The company conducted a careful analysis to project the number of dicamba damage episodes—from 1,300 to over 3,200—that would occur in each of the first five years of its system’s use and even calculated the staff budget that would be required for the investigation of these complaints.\(^{180}\) Similarly, in a September 2016 meeting, BASF also identified “[d]efensive [p]lanting” as a marketing strategy.\(^{181}\) That following January, BASF had a market research document that confirmed the role of defensive planting in contributing to sales.\(^{182}\)

2. 2016 Registration

In November 2016, EPA conditionally registered three dicamba products for new use under FIFRA Section 3(c)(7)(B).\(^{183}\) The 2016 registration greatly extended permissible times to spray dicamba deep

\(^{182}\) Hettinger, supra note 166.

\(^{183}\) EPA, FINAL REGISTRATION OF DICAMBA, supra note 118, at 2.
into the hot summer months, for the first time allowing a new use for post-emergent, over-the-top applications to cotton and soybean crops genetically engineered with resistance to the pesticide. The registration covered millions of acres in thirty-four states.

EPA based its 2016 registration on the supposition that the three dicamba products were less volatile than prior dicamba formulations. Even so, EPA found it necessary to impose a host of use instructions, a form of mitigation, contained on a lengthy label. These instructions restricted applications to a narrow range of wind speeds, required a downwind buffer, stipulated a maximum spray boom height, and specified temperature and humidity adjustments, among other instructions. EPA claimed these instructions would “effectively limit” any impacts if followed. These registrations were time-limited with two-year automatic expiration dates “because of the concerns about resistance and off-target movement,” unless “EPA determine[d] before that date that off-site incidents [we]re not occurring at unacceptable frequencies or levels.”

Monsanto knew its research left many unanswered questions about the real-world risks posed by dicamba’s volatility. In a February 2016 email to coworkers, a Monsanto researcher wrote: “we don’t know how long a sensitive plant needs in a natural setting to show volatility damage. We don’t know what concentration in the air causes a response, either. There is a big difference for plants exposed to dicamba vapor for

184 Id. at 3–4.
185 Id. at 2, 28.
186 Id. at 29, 35; EPA Responds to Dicamba Complaints, DAILY SCOOP (Aug. 29, 2017), https://perma.cc/2E59-Y2AZ (as explained by Dan Kenny, Office of Pesticide Programs, Acting Registration Division Deputy Director, “[t]he 2-year expiration was put in place because of the concerns about resistance and off-target movement”).
187 See EPA, FINAL REGISTRATION OF DICAMBA, supra note 118, at 29–36 (including specific instructions aimed toward worker protection, environmental hazards, resistance management, spray drift management, protection of sensitive areas, and application restrictions); see generally U.S. ENV’T PROT. AGENCY, PRIA LABEL AMENDMENT—ADDING NEW USES ON DICAMBA-RESISTANT COTTON AND SOYBEANS 2 (Nov. 9, 2016), https://perma.cc/KJE9-2SYU [hereinafter EPA, PRIA LABEL AMENDMENT] (including as enclosures the supplemental labeling for XtendiMax with VaporGrip Technology instructing proper procedures for herbicide application).
188 EPA, FINAL REGISTRATION OF DICAMBA, supra note 118, at 29, 32, 33; see generally EPA, PRIA LABEL AMENDMENT, supra note 187 (including as enclosures the supplemental labeling for XtendiMax with VaporGrip Technology, which mandates application equipment and techniques to manage spray drift as well as account for temperature and humidity, spray boom height, and wind speed and direction).
189 EPA, FINAL REGISTRATION OF DICAMBA, supra note 118, at 29; see generally EPA, PRIA LABEL AMENDMENT, supra note 187, at 2 (enclosing XtendiMax with VaporGrip Technology supplemental labeling mandating application equipment, techniques, and restrictions to manage spray drift as well as account for temperature and humidity, spray boom height, and wind speed and direction).
190 EPA Responds to Dicamba Complaints, supra note 186; EPA, FINAL REGISTRATION OF DICAMBA, supra note 118, at 35.
24 vs. 48 hours. Be careful using this externally.” BASF also knew dicamba still posed risks. A BASF executive admitted that “from a practical standpoint” the Engenia product was not different from older dicamba versions, and the company privately told applicators that drift could harm farmers’ harvests. Monsanto responded to BASF’s admission that volatility was an issue with an email from a Monsanto salesman to coworkers stating, “we need to get on this right now! – deny! Deny! DENY!”

In response to the registrations, four environmental and farming nonprofits filed a lawsuit, National Family Farm Coalition v. U.S. Environmental Protection Agency, on behalf of farmers and conservationists in January 2017. The petitioners argued that EPA disregarded environmental and crop harms from foreseeable off-field drift, failed to consider socioeconomic impacts, and lacked substantial evidence to support the registrations.

3. The 2017 Season: “We have never seen anything like this before . . . in our agricultural history.”

Farmers began using the dicamba products for the first time during the 2017 planting season under the new use registration. The events that transpired were unprecedented in the history of U.S. agriculture. In the registration decision, EPA had concluded that its label mitigation was “expected to eliminate any offsite exposures.” But complaints skyrocketed. By the end of the season Professor Kevin Bradley of the University of Missouri issued a report finding 2,708 formal complaints nationwide. Based on estimates by university weed scientists, 2.5 million acres of soybean were damaged by dicamba drift by early August, a figure rising to 3.6 million acres by the end of the summer. This was

195 960 F. 3d 1120 (9th Cir. 2020).
196 Under FIFRA’s judicial review provision, 7 U.S.C. § 136n(b) (2018), EPA’s dicamba registration decision was subject to direct petition for review in the courts of appeals, rather than federal district court. Accordingly, this Article refers to what would otherwise be “plaintiffs” in district court cases as “petitioners” when discussing direct petition for review cases. The nonprofits are the National Family Farm Coalition, Pesticide Action Network, Center for Biological Diversity, and Center for Food Safety. Id.
198 Id. at 8.
199 EPA, FINAL REGISTRATION OF DICamba, supra note 118, at 29.
200 Bradley, supra note 132.
201 Id.
about four percent of all soybean acreage nationwide. And these numbers substantially under-reported the total damage, since the majority of injured farmers do not report drift incidents. In addition, a still higher percentage of susceptible soybeans were injured: an astounding fifty percent of non-dicamba-resistant soybeans in Illinois.

And this was just the soybean damage; many other crops were also damaged, including tomatoes, melons, fruit and nut trees, and vegetables, as well as residential gardens, shrubs, and trees. According to Missouri weed science expert, Dr. Kevin Bradley, “we have never seen anything like this before . . . in our agricultural history.”

Numerous state agricultural departments also reported extensive damage to EPA. University scientists expressed unanimous concern that the dicamba products were more volatile than manufacturers admitted. One of the key messages from state and academic experts was that the EPA label restrictions were not working because they did not address volatility. During this time, university scientists affirmed volatility, or vapor drift, as one of the major routes of dicamba drift injury, based on air sampling data, field volatility studies, and field visits. EPA received extensive test results showing that, contrary to Monsanto’s

203 Petitioners’ Opening Brief (Redacted), supra note 197, at 9.
204 Id.
205 Petitioners’ Excerpts of Record Volume III at 40, 45, 48–49, Nat’l Fam. Farm Coal. v. U.S. Env’t Prot. Agency, 747 F. App’x 646 (9th Cir. 2019) (No. 17-70196); Petitioners’ Excerpts of Record Volume II at 13, Nat’l Fam. Farm Coal. v. U.S. Env’t Prot. Agency, 747 F. App’x 646 (9th Cir. 2019) (No. 17-70196); see also David Bennett, Might Dicamba be Affecting Pollinators?, FARMPROGRESS (Sept. 26, 2017), https://perma.cc/5XWB-EB9P (“In fences and ditches, vegetation like wild grape, red vine and even ragweed were damaged.”).
209 Bradley, supra note 132.
claims, the products volatilized for as many as three or four days following
application. By late summer 2017, Monsanto and BASF began responding to
these damage reports by taking measures to shield themselves from
lawsuits. Among other pretexts, Monsanto began to blame the damage
on a different BASF weed killer, glufosinate. Monsanto designed a form
for investigators to use in looking into farmer complaints that would
“gather data that could defend Monsanto.” BASF drafted a script for its
investigators that directed them to deny liability for drift damage and to
assure the complainant that even severe damage would not result in yield loss.

In internal communications in summer 2017, Monsanto made clear
it would only investigate a dicamba drift complaint if it came from a
Monsanto customer. It treated its employees’ investigative visits to
such “driftees” as an opportunity to sell them dicamba-resistant seeds to
avoid crop injury from future drift. A Monsanto sales employee emailed: “I think we can significantly grow business and have a positive
effect on the outcome of 2017 if we reach out to all the driftee people.”

Faced with the unprecedented 2017 summer of drift, and pressured
by state pesticide departments and farmers to take some action to stop it,
EPA briefly considered state experts’ recommendations to prohibit use
after a spring “cutoff date” to mitigate vapor drift damage, but rejected it
after Monsanto opposed it. When EPA finally acted, it took its orders
not from the states or their experts, but from Monsanto, repeatedly
meeting with its representatives and letting them dictate what label
changes EPA would make. Upon sending the final new label back to
Monsanto, the EPA official assured them: “[l]ike I said, no surprises.”

In October 2017, EPA and Monsanto amended the 2016 registration and

210 Id.; see Stecker, supra note 207 (university field test illustrating XtendiMax volati-
211 Hettinger, supra note 166.
212 Id.
213 Id.
214 Plaintiff’s Exhibit PLFT-1091, Bader Farms. Inc. v. Monsanto Co., No. 1:16-CV-
215 See Baderfarm Exhibit All, DOCUMENTCLOUD, https://perma.cc/8J9W-6CPC (last vis-
ited Aug. 20, 2021) (noting “[d]o not visit a driftee inquiry if the driftee is not a MON cus-
tomer”).
216 Hettinger, supra note 166.
217 Plaintiff’s Exhibit PLFT-177, Bader Farms. Inc. v. Monsanto Co., No. 1:16-CV-00299-
218 Tom Polansek, U.S. Regulator Aiming to Allow Controversial Herbicide Use with Safeguards,
EPA (Sept. 19, 2017), https://perma.cc/434W-QDZ3; Donnelle Eller, Iowa Farmers Make
Record Number of Pesticide Misuse Claims, DES MOINES REGISTER (Sept. 11, 2017),
https://perma.cc/7J88-6AYC.
219 Petitioners’ Excerpts of Record Volume IV of IX at 152–57, 200–04, NFFC, 960 F.3d
1120 (9th Cir. Aug. 13, 2019) (No. 19-70115).
220 Id. at 157 (emphasis added).
added further new mitigation, use instructions, and requirements.221 These label amendments included a restricted use pesticide designation for the dicamba products, a lower application wind speed limit, applicator training, greater record-keeping burdens, and a ban on spraying from dusk to dawn.222 But crucially, and contrary to the state experts’ urgent requests, EPA’s changes did nothing to address volatility or vapor drift.

Overall, despite the evidence of how wrong its 2016 decision and risk assessment had been, EPA declared that the revised document “did not affect the conclusions in the supporting assessment of risk,” and that, rather than provide any new data or analysis supporting the new measures’ efficacy, EPA “continue[d] to rely on all the assessments” supporting the original registration.223 In other words, EPA continued to rely on its 2016 conclusions and risk assessments. The challengers amended their petition for review to encompass these new revisions to the registration and the case continued.224

4. The 2018 Growing Season

The 2017 label amendments failed to prevent continuing massive dicamba drift damage in 2018. By July, Dr. Bradley reported an estimated 1.1 million acres of soybean damage in eighteen states.225 The number of official dicamba damage reports rose even higher than 2017 in the leading soybean-production states of Iowa, Illinois, Indiana, Ohio, Nebraska, and North Dakota.226 Dicamba drift slowed the growth of affected soybeans and often slashed yields, costing farmers many millions of dollars in lost revenue.227 The damage was so severe that by late July 2018, the U.S.’s fourth-largest soybean seed seller wrote to EPA urging prohibition of over-the-top

221 Off. of Chemical Safety and Pollution Prevention, U.S. Env’t Prot. Agency, Registration Amendment – Label Amendment to Change Directions for Use and additional Terms and Conditions to the Registration as Registered on February 7, 2017 for Use on Dicamba-tolerant Cotton and Dicamba-tolerant Soybeans (October 16, 2017); Off. of Chemical Safety and Pollution Prevention, U.S. Env’t Prot. Agency, Registration Amendment - Label Amendment to Change Directions for Use and Additional Terms and Conditions to the Registration as Registered on November 9, 2016 for Use on Dicamba-tolerant Cotton and Dicamba-tolerant Soybeans (Oct. 12, 2017).

222 Faced with EPA’s inaction and catastrophic losses, several states passed restrictions to address vapor drift, such as spray cut off dates and temperature limits. See Pamela Smith, \textit{Dicamba 2018: States Struggle with Application Restrictions – DTN, AgFAX} (Dec. 14, 2017), https://perma.cc/R2GJ-9482 (“Most of the state-by-state changes are being made, they stated, because the federal EPA labels do not address herbicide volatility.”); Petitioners’ Excerpts of Record Volume III of IX at 74–87, \textit{NFFC, 960 F.3d 1120} (9th Cir. 2020) (No. 19-70115).

223 \textit{NFFC, 960 F.3d 1120}, 1128 (9th Cir. 2020).

224 \textit{Id.} at 1130.

225 \textit{Id.} at 1128.

226 \textit{Id.} at 1127–28.

227 See \textit{id.} at 1125, 1139 (discussion of the growth inhibiting effect of dicamba and how dicamba drift has impacted yields and farmers).
applications of dicamba. Another university expert told EPA that the 2018 season demonstrated “that minimizing the off target movement of dicamba to a reasonable level is NOT possible.” Just as Monsanto and BASF had anticipated years before, the widespread damage placed pressure on farmers to purchase dicamba-resistant soybean seeds, not out of choice, but defensively, to protect themselves from rampant dicamba drift damage.

However, growers of other crops, who lacked a dicamba-resistant alternative, were left defenseless. As in 2017, dicamba caused extensive damage to specialty crops, vegetables, tobacco, and fruit trees. For example, a South Dakota vegetable farmer had his crops destroyed by successive waves of dicamba drift. An Arkansas beekeeping operation experienced sharp declines in honey production in areas hard-hit by dicamba drift, which deprived his bees of sufficient flowering plants for their nectar needs, causing him to move his operation out of state.

A second year of massive atmospheric loading of dicamba also took a toll on residential and shade trees as well as other ornamental plants throughout rural America.

Dicamba drift damage also provoked disputes between dicamba users and those affected by drift, turning farmer against farmer, family against family, tearing apart the fabric of rural communities. In at least one case, a dicamba drift dispute resulted in a gunshot death.

Overall, two years of dicamba use in 2017 and 2018 resulted in 4,200 official complaints and more than 4.7 million acres of soybeans injured, as well as scores of other plants and crops, including valuable specialty crops.

228 Id. at 1142.
229 Id. at 1139.
230 Id. at 1142.
231 Dan Nosowitz, Reports from Dicamba’s Drift Across America, MODERN FARMER (July 23, 2018), https://perma.cc/X2RG-LDWN.
232 Emily Unglesbee, When Drift Hits Home, PROGRESSIVE FARMER (July 20, 2018), https://perma.cc/BD79-3XKM.
235 NFFC, 960 F.3d 1120, 1124–25 (9th Cir. 2020).
236 Marianne McCune, A Pesticide, A Pigweed and a Farmer’s Murder, NPR (June 14, 2017), https://perma.cc/WAL8-TUHB.
Figure 2: Farmers in nineteen major soybean states were surveyed by USDA and reported dicamba-damaged fields of their own, their neighbors’, and in their counties. Source: USDA Agricultural Resource Management Survey (2018), as reported in EPA, *Dicamba Use on Genetically Modified Dicamba-Tolerant (DT) Cotton and Soybean: Incidents and Impacts to Users and Non-Users from Proposed Registrations* 31, tbl. 8 (Oct. 26, 2020).

Notably, these figures, as dramatic as they are, are substantial underestimates since only a small fraction of injured farmers report drift damage episodes. Indeed, as shown in Figure 2, a USDA survey in 2018 found that soybean growers alone suffered at least 65,000 adverse effect incidents to their own fields from dicamba drift, “25 times the number of dicamba incidents reported to EPA for all crops.” Farmers reported still more injury when queried about dicamba damage to their neighbors’ fields and in their county, with damage rising to an astounding ten percent and nearly sixteen percent of soybean fields, representing over eleven million and nearly sixteen million damaged acres, respectively.

239 *NFFC*, 960 F.3d 1120, 1138 (9th Cir. 2020).

240 INCIDENTS AND IMPACTS TO USERS AND NON-USERS, supra note 238, at 31–32.

241 See supra Part.IV.B.4 Figure 2.
5. The 2018 Registration Continuation

Despite these two years of unprecedented widespread drift damage, in late October 2018, EPA continued the 2016 new use registration for another 2 years.242 EPA continued the registration even though it did not make a finding that drift damage episodes were not occurring at “unacceptable frequencies or levels” —the condition that EPA had stipulated for continuing the registration.243

EPA for the first time assessed field studies of dicamba spray and vapor drift conducted by university scientists from 2016 to 2018.244 These twelve studies collectively revealed dicamba drift damage to susceptible off-field plants at far greater distances than the registrant studies and modeling EPA had relied upon for prior registrations. More than half of the studies identified injury to plants at distances greater than 130 feet (39.6 meters).245

Based on these studies, EPA scientists provisionally recommended expansion of the action area to 196 feet (60 meters) on all sides of fields where overlap would be possible with endangered species’ range. Once EPA scientists had confirmed the validity of an additional 2018 study, which revealed injury to dicamba-sensitive soybeans 136 meters from the edge of a treated field, they then recommended expansion of the action area to 443 feet (135 meters) beyond the fields.246 Yet EPA added only a 57-foot buffer, a buffer eight times smaller than recommended by the EPA’s scientists, which is only required in the minority of counties with listed species (8% of counties).247

Again, rather than address volatility problems inherent with the dicamba products and assuring safety, EPA just piled even more complex use mitigation instructions on farmers, such as further limiting the time of day when applications could be made, limiting the number of applications and the length of time after planting applications could be made, and allowing only certified applicators to make applications.248

6. The 2019 and 2020 Growing Seasons

The 2019 and 2020 summer growing seasons followed the same damaging drift patterns as those prior: drift damage to crops, trees, gardens, and the environment writ large; real world farming conditions making it impossible to effectively and lawfully spray; state regulators

243 Id. at 8.
244 Id. at 8.
245 Petitioners’ Reply to Respondents’ Brief at 17, Nat’l Fam. Farm Coal. v. U.S. Env’t Prot. Agency, No. 19-70115 (9th Cir. Nov. 18, 2019).
247 EPA, 2018 DICAMBA REGISTRATION DECISION, supra note 122, at 13.
248 NFFC, 960 F.3d at 1130.
overwhelmed with injury complaints even as farmers stopped filing them, feeling them futile; and more farmers forced to defensively adopt dicamba-resistant soybeans.

From 2017 to 2019, “[n]early 5,600 farmers reported dicamba damage to Bayer and BASF, makers of dicamba.”\(^{249}\) “EPA estimate[d] this could be as much as a 25-fold underreporting of incidents.”\(^{250}\) In 2019, nearly 3,000 drift incidents were reported to EPA.\(^{251}\) Compared to prior years, 2019 was “as bad, if not worse, than last year,” according to Leo Reed, president-elect of the Association of American Pesticide Control Officials (AAPCO) and pesticide licensing manager for the Office of Indiana State Chemist.\(^{252}\) According to AAPCO, there was approximately a ten percent increase in reported incidents as compared to 2018.\(^{253}\) In Illinois, “the number of complaints soared from about 120 in the predicamba era to more than 700 in 2019.”\(^{254}\) “In Indiana, [complaints] went from 60 to 200.”\(^{255}\) As explained above, these numbers are gross underestimates since most incidents go unreported.\(^{256}\)

“Illinois led the country in dicamba injury, with regulators actively investigating 724 cases of alleged dicamba injury, a record for the state.”\(^{257}\) “Illinois regulators mentioned that you would be hard-pressed to find a non-dicamba-tolerant soybean field in some counties that wasn’t damaged, because there were whole counties that appeared to be damaged.”\(^{258}\) “With the exception of Missouri, most of the states in EPA Region 7 (Iowa, Kansas, Missouri, and Nebraska) [have] all investigated as many or more injury cases” in 2019 than 2018.\(^{259}\) In Indiana, dicamba drift complaints rose from 135 in 2018 to 178 in 2019.\(^{260}\) Despite the exponential numbers of reported injuries, these numbers nonetheless discount the actual drift incidents dramatically. In states like Missouri, complaint numbers went down, but almost certainly not because drift stopped. Rather, “[a]ccording to a [2019] survey of farmers in Missouri, 80% of them aren’t bothering to file formal complaints anymore, in large part because they don’t think it d[id] any good.”\(^{261}\)”

\(^{250}\) Id.

\(^{251}\) EPA MEMO, supra note 122, at 9.

\(^{253}\) EPA MEMO, supra note 122, at 9.

\(^{255}\) Id.

\(^{256}\) See supra notes 249–250 and accompanying text.

\(^{258}\) Id.

\(^{259}\) Id.

\(^{261}\) Charles, supra note 254.
but one of Missouri’s eight pesticide inspectors left their jobs [in 2018–2019]” with “heavy workload and burnout [as] contributing factors.”\footnote{Id.} A survey of farmers across sixty counties in Nebraska found that only seven percent of farmers who saw dicamba injury filed an official complaint with the Nebraska Department of Agriculture.\footnote{Rodrigo Werle et al., \textit{Survey of Nebraska Farmers’ Adoption of Dicamba-Resistant Soybean Technology and Dicamba Off-Target Movement}, 32 \textit{Weed Tech.} 754, 754 (2018).} Similarly, “[i]n a survey conducted by AAPCO, 19 states reported nearly 1,400 cases of alleged dicamba injury in 2019.”\footnote{Unglesbee, \textit{supra} note 257.} The regulators from these states acknowledged that these numbers are likely far lower than the actual cases of injury: “We’re hearing the same thing as other regulators—people are just not reporting,” said Ryan Williams, an Oklahoma pesticide regulator who represented the EPA Region 6 states of Arkansas, Louisiana, New Mexico, Oklahoma, and Texas at the meeting. ‘\textit{They’re tired of reporting and not getting any results.}’\footnote{Id.}

The extraordinary costs from dicamba injury fell upon state agencies as well. Indiana regulators investigated 178 injury cases in 2019, another record for the state.\footnote{Id.} The Missouri Department of Agriculture added six new positions to address the dicamba backlog, expected to cost over $600,000 a year.\footnote{Brendan Crowley, \textit{Hundreds Seeking Dicamba Complaint Resolutions; Regulators Say They Need Help}, \textit{Joplin Globe} (Mar. 3, 2020), https://perma.cc/9LKT-3F32.} \textit{“Communication with EPA over dicamba problems hit an all-time low in 2019.”}\footnote{Unglesbee, \textit{supra} note 257.} For reasons that are unclear, unlike the near weekly conference calls and data reporting of 2018, suddenly very little regular communication between state regulators and EPA occurred in 2019 and whatever meetings or calls were held were not logged.

\textit{a. Tree Damage}

States have also reported environmental harm beyond crop fields from 2018 to 2020.\footnote{Johnathan Hettinger, \textit{We’ve Got It Everywhere’: Dicamba Damaging Trees Across Midwest and South}, \textit{Midwest Ctr. Investigative Reporting} (June 16, 2020), https://perma.cc/47L4-WBJ3.} Illinois regulators noticed a decline in tree health and began investigating.\footnote{Id.} Nebraska state foresters saw an increase in damage to the state’s trees.\footnote{Id.} South Dakota State University scientists analyzed samples from injured trees as part of a study on the long-term effects of herbicide injury on trees.\footnote{Id.}
The damage some places was worse than that from the Emerald Ash Borer, an insect that killed tens of millions of trees across 25 states.273 “Our No. 1 problem on our trees is herbicide damage,” said Laurie Stepanek, a Nebraska Forest Service specialist.274 According to her, the damage has no boundaries, from cities to forests to nurseries. “We’ve got it everywhere, unfortunately. It’s so widespread and affecting so many trees.”275 Similarly a retired biologist and former nursery owner documented tree injury in Illinois for five straight years.276

Research out of the University of Missouri found that 1/200 of the current dicamba application concentration can injure trees, with apple, red maple, peach, and pin oak being the most sensitive.277 Pecan trees were found to be similarly sensitive,278 and the University of Georgia extension office estimates that synthetic auxins (dicamba, 2,4-D) score an eight out of ten for their potential to contribute to long-term injury to pecan trees.279 Monitoring by the Arkansas Audubon Society identified 243 instances of possible or probable dicamba damage on a wide variety of plants across twenty eastern Arkansas counties in 2019.280 Similar monitoring in 2020 identified 116 instances of probable dicamba damage and four instances of possible dicamba damage.281 Eleven monitored sites where damage was documented in 2019 had signs of damage in 2020 as well, indicating that damage to species was occurring in multiple years.282 The most frequently reported species of plant with probable damage was the sycamore tree.283

Another 2019 monitoring study across twenty-one Illinois counties found that fifty-nine out of the eighty-three locations analyzed had dicamba damage that was rated as moderate, severe, or extreme.284 Trees were the type of plant that most often showed symptoms of damage. Ohio State University extension states that “[f]or woody plants and other perennial species, the potential for long-term or accumulating effects is a concern. Herbicide drift may reduce winter hardiness and long-term vigor, which can result in high replacement costs and years of lost

\begin{footnotesize}
\begin{enumerate}
\item Id.
\item Id.
\item Id.
\item Id.
\item Brian R. Dintelmann et al., \textit{Investigations of the Sensitivity of Ornamental, Fruit, and Nut Plant Species to Driftable Rates of 2,4-D and Dicamba}, 34 \textit{Weed Tech.} 331, 335 (2019).
\item M. Lenny Wells et al., \textit{Simulated Single Drift Events of 2,4-D and Dicamba on Pecan Trees}, 29 \textit{HortTechnology} 360, 363–64 (2019).
\item Dan Schieiman, Audubon Ark., \textit{Dicamba Symptomology Community Science Monitoring Report} 1–2 (Nov. 9, 2020), https://perma.cc/EN2R-JBFH.
\item Id. at 2.
\item Id.
\item Id.
\end{enumerate}
\end{footnotesize}
revenue waiting for new plants to produce.”285 “More than 60 areas managed by the Illinois Department of Natural Resource, including state parks and nature preserves, reported herbicide damage in 2018 or 2019”.286

b. 2020 Injuries

States continued to struggle with dicamba damage in 2020. For example, Iowa “recorded a record-high 215 investigations into auxin injury (potentially dicamba), up from a confirmed 83 dicamba injury cases in the state in 2019.”287 By July 2020, scientists said weather conditions had made a “perfect storm” leading to drift from June spraying. “It’s far worse than past years,’ said Meaghan Anderson, a field agronomist for Iowa State University, based in central Iowa.”288 “You can tell pretty quickly which soybean fields are not Xtend soybeans in my area, because they are all cupped and puckered up.”289

In 2020, complaints increased in Minnesota as compared to 2018 and 2019 to over 9,000 acres, most related to soybeans, but also involving trees and specialty crops.290 Bayer/Monsanto received more complaints in 2020 from Iowa and Minnesota than in prior years.291 In Indiana, “the number of 2020 dicamba complaints still exceeded [the state’s] overall average of 13 annual pesticide investigations before dicamba-tolerant crops were commercialized.”292

The label remained impossible to follow in real-world farming conditions. For example, data compiled by the University of Minnesota showed that “central Minnesota farmers had fewer than 40 hours when they could legally apply dicamba from June 1 to June 15.”293 During the ideal two-week window for spraying dicamba in North Central Iowa in 2020, there were only a total of 40 hours that dicamba could legally be sprayed, “resulting in large quantities of dicamba being applied in a small time period.”294

286 Hettinger, supra note 272.
288 Emily Unglesbee, Off-Target, Once Again, PROGRESSIVE FARMER (July 9, 2020), https://perma.cc/4REU-PCKU.
289 Id.
291 Id.
293 Gullickson, supra note 290.
c. The Ninth Circuit’s Decision

In National Family Farm Coalition v. U.S. Environmental Protection Agency,295 a suit challenging the 2016 registration, as amended in 2017, the parties completed briefing and the Court heard oral argument in August 2018.296 However, before the Court could issue a decision, EPA continued the registration in October 2018. Because EPA added even more use instructions and reviewed data from the prior season before the 2018 registration continuation, the Court subsequently dismissed petitioners’ petition for review as moot and required petitioners to refile, but expedited any such new case.297 Petitioners then filed their petition for review of the October 2018 registration.298 After further briefing, the Court again held oral argument in April 2020 and in June 2020 handed down its opinion.299

Judge William Fletcher authored the opinion for the unanimous three judge panel, joined by Judges Margaret McKeown and Michael Hawkins. The fifty-six-page opinion set forth the Court’s painstaking review of the detailed and voluminous administrative record300 before holding that EPA had violated FIFRA six different ways, broken into two subsets of three.301 First, EPA had “substantially understated” three risks the agency acknowledged.302 Second, EPA had also “entirely failed to acknowledge three other risks.”303 As to remedy, the Court then fully vacated the registrations.304

First, the Court explained that because the registration was a conditional new use registration, EPA had to make two determinations: a determination that the applicant had submitted satisfactory data and a determination that the registration would not “significantly increase the risk of any unreasonable adverse effect on the environment.”305 These made up the overarching controlling legal standard. Both of these findings would need to be supported by substantial evidence when considering the record as a whole.306

295 747 F. App’x 646 (9th Cir. 2019).
296 Id. at 646–47.
297 Id. at 648.
298 NFFC, 960 F.3d 1120, 1130 (9th Cir. 2020).
299 Id. at 1120.
300 Id. at 1125–36.
301 Id. at 1124, 1144.
302 Id. at 1124.
303 Id.
304 Id. at 1145.
305 Id. at 1124 (citing 7 U.S.C. § 136a(c)(7)(B) (2018)); id. at 1133 (“We conclude that substantial evidence does not support the EPA’s conclusion that both statutory prerequisites were satisfied.”).
i. Satisfactory Data

The Court began with the first prerequisite, the “satisfactory data” showing. As to the studies of the herbicide products, the Court noted that Monsanto, prior to the 2016 registration, did not permit its formulation nor its volatility to be available for independent study, so the few small field trials were all only done by Monsanto itself.307 Based on these studies, EPA had concluded in 2016 that the dicamba products would “eliminate any offsite exposures and effectively prevent risk potential to people and non-target species” and that the products “created ‘minimal risks, if they existed at all.’”308 However, the Court explained “EPA’s conclusion was incorrect,” as the record evidence of massive drift damage in 2017 and 2018 showed and “EPA later acknowledged.”309 In 2018, Monsanto and EPA added other studies they characterized as “confirmatory,” that is, confirming the data used to support the 2016 registration and its conclusions; but, as the Court underscored, that 2016 data, far from being satisfactory, had instead “of course, resulted in millions of acres of reported dicamba damage.”310

In support of its satisfactory data finding EPA also relied on hundreds of telephone reports from farmers to Monsanto of crop injury, for which Monsanto almost entirely “absolved” its product and instead blamed the drift damage on older formulations of dicamba sprayed on adjacent post-emergent corn fields.311 The Court rejected that argument, concluding that explanation was “not supported by the data,” because those older varieties had been in use for a number of years prior and neither EPA nor Monsanto explained why “the number of herbicide drift complaints had skyrocketed in 2017 and 2018, after XtendiMax, Engenia, and [a third identical dicamba formulation called] FeXapan were registered for post-emergent use.”312 In fact, record evidence showed that the use of older dicamba formulations on corn had been falling, not rising and “was used on only about 12 percent of corn acreage.”313

Finally, the record data also included research conducted by various universities such as Arkansas, Purdue, Wisconsin-Madison, Michigan State, and Nebraska in 2018 when Monsanto finally permitted them to undertake independent studies of volatility.314 However, rather than support EPA’s conclusions, the data showed that the over-the-top dicamba formulations actually “could volatize and drift, resulting in visual injury to plants.”315 Nonetheless, while the Court held that EPA’s

307 NFFC, 960 F.3d at 1134.
308 Id.
309 Id.
310 Id. at 1134–35.
311 Id. at 1135.
312 Id. (emphases added).
313 Id.
314 Id.
315 Id.
data had “several flaws,” the Court concluded that it ultimately did not need to determine whether substantial evidence supported that registration finding because EPA did not support with substantial evidence the second required registration finding, the “not ‘significantly increase the risk of any unreasonable adverse effect on the environment’” finding, for multiple reasons.316

ii. Failure to Support Registration with Substantial Evidence

On this registration factor—whether EPA supported its determination that amending the registration to add the new uses “would not significantly increase the risk of any unreasonable adverse effect on the environment”317—the Court made six different FIFRA holdings with supporting factual findings, separated into two parts of three each.318 As explained above, the core FIFRA legal standard of “unreasonable adverse effect on the environment” is defined to include “any unreasonable risk to man or the environment, taking into account the economic, social, and environmental costs and benefits of the use of any pesticide.”319 First, the Court held that “EPA substantially understated three risks that it acknowledged.”320 Second, EPA “also entirely failed to acknowledge three other risks.”321

iii. Substantially Understated Risks

As to the first trio of violations—those risks EPA at least acknowledged but failed to support with substantial evidence—first, the Court held that “EPA substantially understated the amount of [dicamba-resistant] seed acreage” that farmers planted, and thus “correspondingly, the amount of dicamba herbicide that had been sprayed on post-emergent crops.”322 Specifically, the Court held that EPA relied on a Monsanto acreage prediction and that such “reliance was improper” because the record evidence showed Monsanto’s prediction underestimated the actual dicamba-resistant seed acreage and commensurately the amount of dicamba herbicide sprayed by at least twenty-five percent.323

Second, the Court held that EPA’s conclusion that state dicamba drift injury reports “could have either under-reported or over-reported the actual amount of damage [wa]s not supported by substantial evidence;” rather, “[t]he record clearly shows that complaints understated the

316 Id. at 1124, 1135–36.
318 NFFC, 960 F.3d at 1124, 1144.
320 NFFC, 960 F.3d at 1124.
321 Id.
322 Id.
323 Id. at 1136.
amount of dicamba damage.” As EPA’s own documents showed, drift injury complaints spiked in 2017 and 2018, and the agency had “no explanation for the spike . . . other than” the new over-the-top products. EPA attempted to “minimize[] the significance of the increase in complaints by crediting a view” that injuries could have been over-reported. While EPA acknowledged that many stakeholders—the Association of American Pesticide Control Officials, university researchers, and some growers—said the complaints were under-reported, it claimed that “others” instead believed injuries were being over-reported. However, the Court examined the record and found “Monsanto, and only Monsanto, was the ‘others’” on which EPA opaquely relied. Monsanto speculated that the damage was caused by older dicamba or other herbicides used on nearby corn fields, but the Court determined, as explained above, that such corn-based use was decreasing, “and that dicamba damage is easily detected [from other herbicides] by its signature ‘leaf cupping’ on affected plants.”

Accordingly, the Court held that “EPA’s purported agnosticism as to whether dicamba damage was over- or under-reported [wa]s contradicted by overwhelming record evidence that dicamba damage was substantially under-reported.” For example, the Court pointed to the conclusion of Iowa State professor Robert Hartzler, who surveyed university field agronomists in midwest farm states and sent EPA his conclusion that “[w]e know the reported incidences represent a very small fraction of total drift cases as farmers are reluctant to involve regulatory agencies.” Similarly, an Indiana state official “estimated that only one out of ten farmers” damaged by dicamba drift “actually filed formal complaints.” And in record documents, EPA even admitted that “[n]ot all reports of crop damage were reported.” “If complaints to state departments of agriculture were under-reported,” then “the amount of actual dicamba damage was, of course, even greater than what the graph in the EPA’s 2018 decision document” admitted.

Third, the Court held that EPA violated FIFRA when it “refused to quantify or estimate the amount of damage caused . . . or even to admit that there was any damage at all.” In the 2018 decision, EPA claimed

324 Id. at 1137.
325 Id.
326 Id.
327 Id.
328 Id. This issue also came up during oral argument, with the Court asking EPA’s attorneys who these “others” were and EPA’s counsel unable to provide any others besides Monsanto. Oral Argument at 20:54–22:56, NFFC, 960 F.3d 1120 (2019) (No. 17-70810), https://perma.cc/TZ6E-LKY5.
329 NFFC, 960 F.3d at 1137.
330 Id. (emphases added).
331 Id. at 1138 (concluding that less than twenty-five percent were reported).
332 Id.
333 Id.
334 Id.
335 Id.
that non-dicamba-resistant soybean crop damage was merely “potential” and that it did “not have information to quantify” the damages.336 And with regard to all other damage—to “specialty crops, vegetable, and ornamental, fruit, and shade trees”—EPA referred to them generally as only “alleg[ed] damage” to the “landscape.”337

The Court held that EPA in fact did have “information from which it could have quantified dicamba damage, even if it could not have calculated with precision the reduction in yield caused by the damage.”338 In a September 2018 presentation, EPA officials showed that more than 3.6 million acres of soybeans were damaged by dicamba in 2017, and in the registration decision, EPA again used the 3.6 million figure.339 The same source, Professor Bradley of the University of Missouri, had reported that by mid-July 2018, months before the 2018 decision, already another 1.1 million acres had been damaged.340 In reality, EPA actually “had a great deal of qualitative information about extensive dicamba damage during both 2017 and 2018.”341

The Court again found that EPA’s decision was belied by the record evidence: EPA had sufficient information to quantify the damage, including a number of studies, presentations, articles, and other documentation that included acreage totals and significant numbers of complaints.342 Among them, the Court pointed to emails to EPA officials from university weed scientists and state department of agriculture representatives reporting injury to “specialty crops, vegetables, and ornamental, fruit, and shade trees.”343 The Court recounted numerous transmittals from state experts to EPA on damage, including Dr. Ford Baldwin of Arkansas and Dr. Bradley of Missouri.344 And the Court gave some vivid examples. From the Kansas Department of Agriculture: “we have been over run [sic] with dicamba complaints.”345 From North Dakota State University’s pesticide program specialist: “[w]hat we now know, in 2018, is that minimizing off target movement of dicamba to a reasonable level is NOT possible . . . this level of movement is completely unacceptable.”346 From Tennessee: “wave after wave of dicamba exposure.”347 Professor Larry Steckel of the University of Tennessee stated that the drift crisis “is like nothing I have ever seen before . . . Dicamba drift for the past three years has often travelled a half mile to
three-quarters of a mile and, all too frequently, well beyond that.”

Accordingly, the Court held that EPA’s refusal to quantify the amount of damage caused was contrary to FIFRA and not supported by substantial evidence.

iv. Risks EPA Unlawfully Failed to Acknowledge and Consider

In addition to the ways in which EPA “substantially understated the risks it acknowledged,” the Court identified a second trio of FIFRA violations, risks that EPA “entirely failed to acknowledge,” including risks that EPA “was statutorily required to consider.” First, EPA failed to acknowledge and consider problems with users’ inability to follow the label instructions, despite EPA’s heavy reliance on these instructions as mitigation.

“Extensive evidence in the record indicate[d] that there [wa]s a risk of substantial non-compliance with the EPA-mandated label.” The product-use instructions are a form of mitigation: that is, EPA’s “no unreasonable adverse effect” determination was predicated on the label being able to be followed. Thus, the inability to follow those directions would result in dicamba drift damage and undermined any such “no unreasonable adverse effect” conclusion.

As an initial matter, the term “label” is a misnomer here “as that term is usually understood.” Rather, the dicamba products’ use directions were forty pages long. Even those were not static but ever-shifting as discussed in Parts IV.B.2, IV.B.3, IV.B.4, and IV.B.5; they had gone through several iterations (2016 revisions, 2017 revisions, and 2018 revisions). They included myriad spray instructions and restrictions, including: time of day; wind speed (between three to ten miles per hour); temperature inversions; whether there was rain coming within twenty-four hours; whether the wind direction was blowing towards “dicamba-sensitive” crops; an in-field downwind spray buffer; spraying equipment ground speed; spraying equipment length and height above ground; the

348 Id. (estimating forty percent of Tennessee non-DT soybean acres damaged).
349 Id. at 1124–25, 1144.
350 Id. at 1139.
351 Id. at 1140–42.
352 Id. at 1139.
353 Id. at 1142; see EPA Registers Dicamba Formulation for Use on Dicamba Tolerant Corps, U.S. ENV’T PROT. AGENCY, https://perma.cc/QK3D-VXYF (last updated Oct. 20, 2020) (noting that the EPA label contains specific instructions to mitigate the risk of dicamba drift).
354 NFFC, 960 F.3d at 1140.
355 Id.; see also U.S. ENV’T PROT. AGENCY, DECISION NO. 545700, MASTER LABEL FOR EPA REG. NO. 524-617 REGISTERED USE PESTICIDE: M1768 HERBICIDE (2018) (providing notification of new Master Labeling for M1768 Herbicide that incorporates previous revisions and attaching the forty-page document containing use directions).
356 NFFC, 960 F.3d at 1139–40.
number of applications per season and per crop; restricted use certification and training; and others.\(^{357}\)

As one might expect, the Court found that the record evidence was “substantial” in showing that “even conscientious applicators had not been able consistently to adhere” to the use directions in real world farming conditions.\(^{358}\) Rather, the record evidence showed that the instructions were “difficult if not impossible” to follow.\(^ {359}\) The dicamba use label “was probably the most complex label I ha[ve] ever seen in my 40-year career,” according to one agricultural company executive.\(^ {360}\) Other users told EPA that “[t]here doesn’t appear to be any way for an applicator to be 100% legal in their application” and “there is no legal way to spray th[is] field,” putting applicators in a “no-win situation.”\(^ {361}\) A state survey of Illinois commercial applicators showed that only sixty-six percent believed they were able to follow the label effectively and included comments like “I believe it is impossible to make an on-label application as the label is written.”\(^ {362}\) Still, others were more blunt, saying that trying to follow the instructions in real-world farming conditions in their locations such as “blustery west Texas [wa]s basically a fairy tale. You can’t do it . . . Your fairy godmother has to pull out a wand, tap a pumpkin and turn it into a carriage.”\(^ {363}\)

Nor was the evidence merely experiential. The Court explained that Purdue University professors calculated the difficulty in complying with the label using actual rainfall events in 2018, taking into account the restrictions based on wind speed and temperature inversions and calculated that there were only forty-seven hours during the entire month of June in which spraying the dicamba products would have been legal.\(^ {364}\) And of those total monthly hours, there were only two (twenty-four hour) days where, during an eight-hour-day, application would have been possible (eleven hours one day, eight hours another); the remaining hours were scattered throughout the rest of the month in smaller stray increments.\(^ {365}\) The data underscored that “in the real world” there are not “very many hours” where applicators can be “completely compliant.”\(^ {366}\)

Further, the Court noted that much of the record evidence naturally dealt with the impossibility of adhering to the earlier 2016 and 2017 use directions despite farmers’ best efforts, but in the fall 2018 registration, EPA added even more directions, such as further reducing the time of day

\(^{357}\) Id. at 1140.

\(^{358}\) Id.

\(^{359}\) Id. at 1124 (emphasis added).

\(^{360}\) Id. at 1140 (estimating that over the course of the entire 2017 summer, his operation only had 44 hours of application time that would have been allowed under the label).

\(^{361}\) Id. (emphasis added).

\(^{362}\) Id. at 1141 (emphasis added).

\(^{363}\) Id. (emphasis added).

\(^{364}\) Id.

\(^{365}\) Id.

\(^{366}\) Id.
when applications could occur and total days after planting.367 Thus, the record evidence of substantial non-compliance with the prior label showed that compliance with the 2018 label “\textit{would} be even more difficult.”368 Despite this elephant in the room—again, on which EPA had moored its core “no unreasonable adverse effect on the environment” conclusion—“EPA nowhere acknowledged the evidence in the record showing there had been substantial difficulty complying with the mitigation requirements of the earlier labels.”369

Second, the Court explained that “FIFRA requires the EPA to consider, as part of the cost-benefit analysis, ‘any unreasonable risk to man or the environment, taking into account the economic, social, and environmental costs’” of the pesticide.370 Yet the Court held that EPA had nonetheless “entirely failed to acknowledge risks of economic and social costs.”371 As to economic costs, the Court held that “EPA entirely failed to acknowledge an economic cost that is \textit{virtually certain to result} from the conditional registrations;” namely, anti-competitive, monopolistic effects to the seed and related agricultural markets.372

As discussed above, the predecessor to the dicamba-resistant crop system was the glyphosate-resistant (or Roundup Ready) crop system, with the seeds and pesticide (Roundup) sold together as a crop system. These crop systems had already become a near monopoly, with ninety percent of soybeans in 2008 being Roundup Ready.373 It also caused a related agronomic problem: weed resistance.374 As with overusing antibiotics, Roundup overuse generated an epidemic of glyphosate-resistant “superweeds” infesting over 120 million acres of U.S. cropland.375

Then, because of that overuse, as also explained above, the resistant weed problem led to Monsanto’s short-term “solution” to the crisis of its own creation: dicamba-resistant crops. As such, dicamba-resistant crops were quickly “\textit{well on their way to the same degree of market dominance},”376 By 2017, dicamba-resistant crops constituted twenty-five percent of soybeans, and by 2018, fifty percent.377 Moreover, the record

\begin{itemize}
\item 367 Id.
\item 368 Id.
\item 369 Id. at 1142.
\item 370 Id. (quoting 7 U.S.C. § 136(bb) (2018)) (emphasis removed).
\item 371 Id.
\item 372 Id. (emphasis added).
\item 373 Id.
\item 376 \textit{NFFC}, 960 F.3d at 1142.
\item 377 Id.
\end{itemize}
evidence showed that farmers felt *compelled* by the increased planting of dicamba-resistant crops and the accompanying and increasing off-field drift damage to change from conventional soybeans to dicamba-resistant soybeans as a defensive measure, known as “defensive adoption.” Seed company executives wrote to EPA in 2017 and 2018, warning them about this anticompetitive economic cost. Professors and weed scientists from North Dakota, Tennessee, and Arkansas told EPA similarly. Dr. Baldwin told EPA:

Dicamba has a chemistry problem that likely cannot be fixed, or at least no evidence has been provided that it can be successfully applied . . . renewing the cotton and soybean registrations will leave the industry no choice but to plant 100% of the soybean acreage [with] this technology.

Accordingly, the Court held that the over-the-top registrations “create[,] a substantial [] risk that DT soybeans, and possibly DT cotton, will achieve a monopoly or near-monopoly.” This “anti-competitive effect of the registrations would impose a clear economic cost,” but EPA failed to even identify it, let alone take it into account.

Third and finally, the Court held that “EPA also entirely failed to acknowledge [the] social cost that [farming communities] had already been experienc[ing] and was likely to increase.” FIFRA expressly required EPA to take into account not just economic and environmental costs, but also “social” costs, and there was “extensive evidence” that the “dicamba herbicides ha[d] torn apart the social fabric of many farming communities.” Letters to EPA from stakeholders told them of the high, unprecedented cost, “pitting neighbor against neighbor . . . [f]armers threatening other farmers.” Responses to an Illinois survey included: “[i]n 43 years of business I have never seen a more divisive product among neighbors both farm and non-farm.” An Arkansas farmer was shot and

378 Id.; see also FAQs About Monsanto’s Dicamba-Resistant Crops and Xtendimax, CENTER FOR FOOD SAFETY (Feb. 12, 2018), https://perma.cc/27XU-AMPU.
379 See NFFC, 960 F.3d at 1142 (“Even more alarming is the number of my customers who have told me they will plant all Xtend varieties, instead of my [conventional] seed, as a defensive measure against damage from [drift]. “[O]ver and over again from our farmer customers” we are hearing “I guess I will have to plant dicamba resistant soybeans next year to avoid the off target injury. I cannot afford to keep getting my soybeans damaged from dicamba.”).
380 Id. at 1138–39.
381 Id. at 1143.
382 Id.
383 Id.
384 Id.
386 NFFC, 960 F.3d at 1143.
387 Id.
388 Id. (“This technology cannot continue as is if we ever wish to raise a susceptible crop or maintain healthy relationships with our residential and environmental neighbors.”).
killed in an argument over dicamba drift damage. Not just farmers but homeowners and gardeners suffered damage as well: severe damage to trees, ornamental plants, shrubs, and vegetables. Accordingly, the Court held that the “severe strain on social relations in farming communities” where the dicamba products were being sprayed was a “clear social cost” and that EPA had failed to identify or account for it.

v. Summary of Holdings and Remedy

For all these reasons and considering the record as a whole, the Court then concluded that substantial evidence did not support the new use registration decision. While EPA had found two benefits from the uses, it had “failed to perform a proper analysis of the risks and resulting costs of those uses.”

First, EPA “substantially understated the costs it acknowledged.” These included the total acreage planted with dicamba-resistant soybeans and the resulting use of dicamba. EPA relied on a Monsanto prediction when the record evidence before EPA showed the actual acreage “was much higher” and the combined “soybean and cotton acreage was higher still.” “Further, the EPA recognized that there had been an enormous increase in dicamba [drift] complaints in 2017 and 2018, but it purported [not to know] whether those complaints under-reported or over-reported the amount of dicamba damage.” “In fact, record evidence show[ed] the complaints substantially under-reported the actual amount of damage.” Finally, the Court held that EPA “substantially understated the amount of dicamba damage,” characterizing it as only “potential” or “alleged” and “claiming there was insufficient data from which to estimate the amount of damage.” The record evidence, however, showed that dicamba drift damage from the 2017 and 2018 over-the-top new use registrations had caused “enormous and unprecedented damage.”

Second, EPA entirely failed to acknowledge and consider other costs. EPA entirely failed to account for “the substantial degree of non-compliance” with the label mitigation, given the impossibility of following it in real-world farming conditions and what that would mean for

389 Id. (“These are 100-year old oaks . . . We’re senior citizens and we don’t have the time left in our lives to plant new trees and watch them get even halfway to maturity.”).

390 Id.

391 Id. at 1144; see also id. at 1124.

392 Id. at 1144.

393 Id.

394 Id. at 1136–37.

395 Id.

396 Id.

397 Id.

398 Id.

399 Id. (emphasis added).

400 Id.
increased drift damage. That is, “EPA based its registration decision on the premise that the label’s mitigation” would be followed and thus “limit off-field” drift, when the evidence was that label instructions were “difficult if not impossible to follow.” Further, EPA “failed to recognize” and consider the economic costs of drift damage, coercing farmers to defensively adopt dicamba-resistant crops, and the anti-competitive, monopolistic results on the soybean and cotton industries. Finally, EPA failed to recognize and consider “the enormous social cost to farming communities” of the new use registrations, where the products “had turned farmer against farmer, and neighbor against neighbor.”

Finally, turning to remedy and applying the Ninth Circuit’s criteria for vacatur, the Court vacated the registrations, EPA and Monsanto had argued for leaving the registrations in effect, which the Court rejected. “EPA made multiple errors,” and its “fundamental flaws” were “substantial.” The Court found it “exceedingly ‘unlikely’” that EPA could (lawfully) issue the same registration again for the new uses. The Court carefully weighed the practical effects of the decision on farmers’ current use and any difficulty finding alternative pesticide options, noting that it was “aware of the adverse impact on growers who had already purchased” the products and that “[t]hey had been placed in th[e] situation through no fault of their own,” but concluded that the absence of substantial evidence to support the registrations compelled vacatur.

To ensure its decision became effective immediately, the Court took the rare step of issuing the mandate concurrent with the decision.

vi. Postscript

Several fairly extraordinary things happened next over the course of just a few weeks after the Court handed down its ruling. First, EPA issued an administrative order prohibiting any further sale but

401 Id.
402 Id. at 1124.
403 Id. at 1144.
404 Id. (emphasis added).
405 Id. at 1144–45.
406 Id. at 1144.
407 Id. at 1145.
408 Id.
409 Id. The petitioners had also raised a half dozen arguments as to how and why the registration violated the Endangered Species Act (ESA), creating risks to hundreds of species within the footprint of the registration approval. However, because the Court already completely vacated the registrations based on the FIFRA violations, it found it unnecessary to reach petitioners’ ESA arguments. Id. at 1125. For a brief discussion of EPA’s duties under the ESA when it registers pesticides, see discussion infra Part V.D.i.
410 See NFPC, 960 F.3d at 1145 (“The mandate shall issue forthwith.”). Normally the mandate does not issue for several weeks in order to give parties a chance to seek rehearing. See generally Fed. R. App. P. 41 (providing the rules for mandate, specifically contents, issuance and effective date, and stays); 9TH Cir. R. 41-2.
nonetheless allowing the continuing use of existing, already purchased stocks of the products for another two months.\footnote{U.S. Env’t Prot. Agency, Final Cancellation Order for Three Dicamba Products (June 8, 2020), https://perma.cc/44KP-WS6M.} Given the expedited context and ongoing summer spraying, the petitioners then filed an emergency motion for the Court to enforce its vacatur, which the respondents (EPA, Monsanto, BASF, and DuPont) opposed.\footnote{Petitioners’ Emergency Motion to Enforce this Court’s Vacatur and to Hold EPA in Contempt, Nat’l Fam. Farm Coal. v. Env’t Prot. Agency, No. 19-70115 (9th Cir. June 11, 2020), ECF No. 127-1; EPA’s Response to Petitioners’ Emergency Motion to Enforce this Court’s Vacatur and to Hold EPA in Contempt, Nat’l Fam. Farm Coal., No. 19-70115 (9th Cir. June 16, 2020), ECF No. 144; BASF Corp.’s Opposition to Petitioners’ Emergency Motion to Enforce Vacatur and Cross-Motion to Recall and Stay Mandate, Nat’l Fam. Farm Coal., No. 19-70115 (9th Cir. June 16, 2020), ECF No. 145; Intervenor-Respondent Monsanto Co.’s Opposition to Petitioners’ Emergency Motion to Enforce this Court’s Vacatur and to Hold EPA in Contempt, Nat’l Fam. Farm Coal., No. 19-70115 (9th Cir. June 16, 2020), ECF No. 146.}

Further, in its June 3 decision, the Court had agreed with petitioners that the scope of the case encompassed all three dicamba products covered by the registration decision, not just Monsanto’s product, and vacated all three.\footnote{NFFC, 960 F.3d at 1120, 1131–32, 1145.} Monsanto had previously been the only intervenor; BASF and DuPont now moved to intervene,\footnote{E.I. du Pont de Nemours & Co.’s Emergency Motion to Intervene Under Federal Rule of Appellate Procedure 15(d) & Circuit Rule 27-3, NFFC, No. 19-70115 (9th Cir. June 12, 2020), ECF No. 129-1; BASF Corp.’s Emergency Motion to Intervene under Federal Rule of Appellate Procedure 15(d) & Ninth Circuit Rule 27-3, NFFC, No. 19-70115 (9th Cir. June 12, 2020), ECF No. 130-1. The American Farm Bureau, Croplife, and several crop associations also filed late amicus briefs during this window. Brief of Amici Curiae American Farm Bureau Federation et al. in Support of the Petitions for Rehearing En Banc, NFFC, No. 19-70115 (9th Cir. July 30, 2020), ECF No. 176-2; Brief of Amicus Curiae CropLife America in Support of Intervenor-Respondents’ Petitions for Rehearing En Banc, NFFC, No. 19-70115 (9th Cir. July 30, 2020), ECF No. 175-2.} and BASF filed its own emergency motion, to recall and stay the court’s issuance of the mandate.\footnote{See BASF Corp.’s Opposition to Petitioners’ Emergency Motion to Enforce Vacatur and Cross-Motion to Recall and Stay Mandate, supra note 412 (stating BASF’s contention that the mandate should be recalled).} After the Court granted the very belated motions to intervene but denied both emergency motions,\footnote{Order, NFFC, No. 19-70115 (9th Cir. June 12, 2020) (order granting emergency motion to intervene); Order, NFFC, No. 19-70115, (9th Cir. June 19, 2020) (order denying motion to enforce vacatur and hold respondent in contempt); Order, NFFC, No. 19-70115 (9th Cir. June 25, 2020) (order denying cross motion to recall and stay mandate).} each of the Intervenors filed
separate petitions for rehearing en banc, all of which were subsequently denied.

Finally, after the case was final and the next round of litigation was already well underway, in May 2021, EPA’s Inspector General (IG) released a detailed report finding that its 2018 decision to extend dicamba registrations did not follow certain required operating procedures, such as conducting internal peer reviews of scientific documents, and that senior-level staff intentionally excluded the conclusions of staff scientists. This report followed and expanded upon the agency’s March 2021 memo on its scientific integrity policy, which re-committed EPA to scientific integrity and gave several examples in the recent past where the agency now acknowledged politics had overruled science. One of those examples was the 2018 dicamba approval. However even though the 2020 dicamba decision was made barely 5 months after the Court’s vacatur, by the same prior EPA administration that made the 2018 decision, in a transparently political manner in time and manner, neither the scientific integrity memo nor the IG report similarly criticized it.

vii. Dicamba 3

While that round is now complete, the dicamba litigation is far from over. On July 2, 2020, less than one month after the Ninth Circuit held the prior registrations of these products unlawful for multiple violations of FIFRA and vacated them, Bayer and BASF submitted registration applications for the same products (XtendiMax and Engenia) for use on cotton and soybeans. EPA responded by assigning fifty staff members to work on the 2020 Registration Actions in a rush to issue them before Election Day.

417 Petition for Rehearing En Banc, NFFC, No. 19-70115 (9th Cir. July 20, 2020), ECF No. 170; E.I. du Pont de Nemours & Co.’s Petition for Rehearing En Banc, NFFC, No. 19-70115 (9th Cir. July 20, 2020), ECF No. 172; Intervenor-Respondent Monsanto Co.’s Petition for Rehearing En Banc, NFFC, No. 19-70115 (9th Cir. July 20, 2020), ECF No. 173-1. These were followed by more amicus briefs by the same parties. Brief of Amici Curiae CropLife America in Support of Intervenor-Respondents’ Petitions for Rehearing En Banc, supra note 414; Brief of Amici Curiae American Farm Bureau Federation et al. in Support of the Petitions for Rehearing En Banc, supra note 414.

419 See discussion infra Part IV.B.6.c.vii.

422 See discussion infra Part IV.B.6.c.vii.

424 Id.
election and without providing an opportunity for public notice and comment, EPA again registered the same products that had been vacated fewer than five months prior.425 EPA made the announcement not in Washington, D.C. but during an event on a farm in Georgia, to a crowd including the American Farm Bureau Federation president Zippy Duvall, the National Cotton Council of America Chairman Kent Fountain, two Georgia congressmen, and the Georgia Commissioner of Agriculture.426 While the prior approvals had been limited to two-year registrations and conditional, this time, despite everything that had occurred to this point, EPA \textit{unconditionally} registered the products and issued the registrations for the next five years.427 Just as the prior 2016 and 2018 decisions allowed, the 2020 decision allows for use of these dicamba products in 34 states, totaling over 100 million acres of U.S. farmland.428 EPA mainly based the new decision on past studies, previously available to EPA for its prior 2016 and 2018 registration decisions, while relying “on only a handful of further assessments of the risks to human health and the environment put together in fewer than four months following Bayer and BASF’s applications on July 2.”429 Although EPA claimed in the decision to have addressed and complied with the Court’s opinion, in reality, a great many of the deficiencies identified by the Court remain unaddressed.430 In December 2020, the same four nonprofits challenged this registration, litigation which is ongoing.431

425 Id. at 58–59; see EPA MEMO, supra note 122, at 3 (discussing how EPA decided to register the same products despite the Ninth Circuit decision).

426 Complaint for Declaratory and Equitable Relief, supra note 423, at 59; Administrator Wheeler Meets with Agricultural Stakeholders in Florida, Georgia, U.S. ENV’T PROTECTION AGENCY (Oct. 27, 2020), https://perma.cc/6RYR-DJJN.

427 Id.

428 Id.

429 Id.

430 Id. at 60.

431 The Arizona district court plaintiffs are the same as the prior petitioners: Center for Biological Diversity, National Family Farm Coalition, Center for Food Safety, and Pesticide Action Network North America. Complaint for Declaratory and Equitable Relief, supra note 423. However, despite EPA’s decision being another “new use” registration for the products, unlike in 2016, EPA did not hold public notice and comment on its 2020 decision. See EPA MEMO, supra note 122, at 7 (stating how the new use 2016 registration went through public comment). FIFRA divides judicial review between appellate courts for those decisions following a “hearing,” which courts have interpreted to include notice and comment rulemaking, United Farm Workers of America v. Env’t Prot. Agency, 592 F.3d 1080, 1082–83 (9th Cir. 2010), and those not following a hearing, which go to district court. See 7 U.S.C. § 136n (2018) (discussing when district court review is appropriate in the context of administrative procedure). Due to this lack of clarity caused by EPA, the nonprofits filed in both district court and the Ninth Circuit directly. Petition for Review, Nat’l Fam. Farm Coal. v. Env’t Prot. Agency, No. 20-73750 (9th Cir. Dec. 21, 2020), ECF No. 1–6.
V. PULLING BACK AND GOING FORWARD

Critics have long derided EPA's implementation of its FIFRA authority to oversee pesticides as weak and inadequate, resulting in significant adverse impacts to farmers, public health, and the environment. While a legislative overhaul is needed and fully warranted, the recent dicamba decision, coupled with some other recent important pesticide litigation, reveal that EPA's oversight failings may well be more political than statutory or regulatory in nature. As such, these new precedents and ongoing litigation may help force long-needed agency improvements in environmental protection, breathing some new and direly needed life back into FIFRA oversight.

A. The Dicamba Decision: Lessons Learned

The dicamba decision—holding unlawful and vacating the dominant pesticide being sprayed over two major commodity crops across millions of acres—reverberated across the country in national news. The impact of the case could also be measured in Monsanto/Bayer’s allegations of catastrophic economic losses to U.S. agriculture from the pesticides' absence or lost sales, or the nearly immediate reaction of the Trump administration in trying to undermine the Court's decision predicated on hyperbolic claims of threats to “the global food supply,” or in the intensive weeks of further emergency litigation briefing immediately after the Court’s decision.

See, e.g., NFFC, 960 F.3d 1120, 1136–38 (9th Cir. 2020) (finding that EPA understated the risks and refused to acknowledge significant damage caused by dicamba herbicides).

Brief for Intervenor-Respondent Monsanto Co. Redacted at 67, NFFC, 960 F.3d 1120 (9th Cir. 2020) (No. 19-70115), 2019 WL 5858350, at *58 (“[C]rop losses [c]ould be catastrophic.”); Brief of Amicus Curiae CropLife America in Support of Respondent United States Environmental Protection Agency’s Response to Petitioners’ Emergency Motion at 12–13, NFFC, 960 F.3d 1120 (9th Cir. 2020) (No. 19–70115), ECF No. 147-2 (“This uncertainty would wreak havoc on the agricultural market.”).

EPA Offers Clarity to Farmers in Light of Recent Court Vacatur of Dicamba Registrations, U.S. ENV’T PROTECTION AGENCY (June 8, 2020), https://perma.cc/85DL-TSXB.
following the decision’s issuance. But it can also be measured in precedential terms, where it seeded important new ground in its holdings. Faculty at UC Berkeley and UCLA law schools deemed the decision one of “The Ninth Circuit’s 10 Most Important Environmental Decisions of 2020.”

First, FIFRA’s statutory rubric speaks in terms of benefits and costs, the risks, or the adverse impacts of the decision. Yet, very few if any cases have previously fleshed out exactly what types of “costs” EPA must consider, analyze, and balance against a pesticide’s alleged benefits. Pesticide drift has an economic as well as environmental component; EPA must grapple with both in future registration decisions. This includes a duty not just to consider but to quantify such damages when it had record evidence permitting such calculation. Another “clear economic cost” that EPA must take into account when it considers approving future registrations is the creation of anti-competitive monopolies in seed and pesticide markets, and the loss of choice for farmers in what they want to grow and how they want to farm. Furthermore, in addition to economic and environmental costs, despite the statute’s express language mandating that “social” costs also be weighed, never before had EPA been called to task for its failure to consider such costs in a registration; the agency must consider and weigh the broader potential adverse impacts on rural communities from its pesticide decisions. Finally, for all aspects of its decision, EPA cannot ignore record evidence contrary to its conclusions.

Second, the heart of FIFRA’s registration scheme is the pesticide label. Unlike other statutes like the Clean Water Act or Clean Air Act, oversight is not by permit or restrictions on actual use, but by label statements. The label is the law, and following it is the sole obligation FIFRA places on pesticide users. Particularly in these circumstances, the efficacy of regulation depends entirely on the label restrictions being meaningful; otherwise, oversight is simply a paper exercise, not real. For example, EPA could determine it found “no unreasonable adverse effects

438 See generally NFFC, 960 F.3d 1120 (9th Cir. 2020) (No. 19–70115), ECF Nos. 127–169 (briefing between June 3 and June 25).
440 NFFC, 960 F.3d 1120, 1136 (9th Cir. 2020).
441 Id. at 1138.
442 Id. at 1142–43.
444 NFFC, 960 F.3d at 1143–44.
445 Administrative Procedure Act, 5 U.S.C. §§ 551–559, 701–706, 1305, 3105, 3944, 4301, 5335, 5372, 7521 (2018) (“The reviewing court shall hold unlawful agency action, findings, and conclusions found to be—(A) arbitrary, capricious an abuse of discretion, or otherwise not in accordance with the law; . . . (E) unsupported by substantial evidence . . . ; or (F) unwarranted by the facts”).
446 See supra note 65 and accompanying text.
447 See supra note 65 and accompanying text.
448 See supra note 65 and accompanying text.
on the environment” if farmers sprayed a pesticide so long as “unicorns are present in the field,” knowing full well that unicorns are imaginary but still meet its statutory obligations. EPA has basically done the equivalent. EPA relied on a forty-page long byzantine “label” without ever actually analyzing if farmers could actually follow those labels in real-world farming conditions. Even though farmers—from windy west Texas, to the heat and humidity (and frequent temperature inversions) of Missouri, to the flat lands and high temperatures of the delta regions of Arkansas and Tennessee—repeatedly told them the contrary. These use limitations are mitigation, without which unreasonable adverse effects on the environment may occur, based on EPA’s own conclusions. Thus, the agency must support them with substantial evidence if it is to register pesticides based on them, and that includes analyzing whether it is feasible to follow them in the weather and geography in which it is approving pesticide uses.

These precedential impacts of the decision are also illustrated by litigation positions pursued by EPA in subsequent cases. In other words, NFFC confirmed responsibilities the agency has made a habit of ignoring, and now must confront in other contexts. For example, at the time this Article is being written, EPA is seeking partial voluntary remand from the Ninth Circuit in a challenge to its glyphosate interim registration decision, requesting more time to “reconsider” whether NFFC affects its analysis regarding ecological costs. And EPA previously (unsuccessfully) sought a similar course of action in a petition for review of another pesticide, sulfoxaflor, in part based on its admission that it was not in compliance with the NFFC decision. Finally, in an action seeking judicial review of another trio of pesticide interim decisions, the parties agreed to seek a stay, again in part because of EPA’s need to rethink its position in light of the NFFC decision. In short, the agency now recognizes those decisions suffer from the same or similar flaws and are indefensible; however in each case rather than admitting legal error and vacating the registration, EPA is asking for a mulligan, to “reconsider” the issues. But the motions reveal the truth, regardless of how EPA

450 See NFFC, 960 F.3d 1120, 1140–41 (9th Cir. 2020) (explaining the difficulty in meeting all the conditions required on the label which, under FIFRA, must be met for there to be no unreasonable adverse effects on the environment).
451 Id. at 1140–42.
452 Id.
453 Id. at 1142.
455 Motion for Voluntary Remand Without Vacatur at 6, Ctr. For Food Safety, No. 19-72109 (9th Cir. Oct. 26, 2020), No. 51-1; Order re Mot. Remand Denied, Ctr. For Food Safety, No. 19-72109 (9th Cir. Jan. 12, 2021), No. 67; see infra note 525 and accompanying text.
456 Atrazine, propazine, and simazine.
457 Joint Motion to Hold Case in Abeyance for Additional 30 days, Rural Coalition v. U.S. Env’t Prot. Agency, No. 20-73220 (9th Cir. June 15, 2021), No. 22.
couches it: What had passed muster before no longer will, and they know it.

B. Putting NFFC in Context

The NFFC decision is part of a body of recent decisions sowing new seeds in FIFRA’s substantial evidence standard of review and the requirement that EPA find no unreasonable adverse effect on the environment prior to registering a pesticide. These other cases, summarized below, have strengthened what EPA is required to show in support of its decision to register a pesticide use under FIFRA’s various registration standards, but have also left open new questions that await adjudication in other ongoing or future cases.

I. Pollinator Stewardship Council v. EPA (Pollinator I)

While the Court in NFFC only addressed the sufficiency of the data before EPA in issuing the dicamba conditional registration in dicta, in Pollinator Stewardship Council v. U.S. Environmental Protection Agency (Pollinator I), the Ninth Circuit examined EPA’s duties to abide by the agency’s existing data requirements for unconditional registrations. In that case, beekeepers had challenged EPA’s decision to unconditionally register a new insecticide, sulfoxaflor, even though the screening-level studies EPA had received from the pesticide registrant Dow (now Corteva) showed that the insecticide was “highly toxic to bees,” and even though the additional, higher-tiered data Dow submitted had so many flaws that EPA found Dow’s results inconclusive as to sulfoxaflor’s harms to bees.

The Court struck down the registration as unlawful. In so holding, the Court explained that, under EPA’s own framework for assessing pesticide risks to bees and other pollinators, the pesticide registrant must first submit screening-level studies, referred to as Tier 1 studies, to identify whether potential risks to bees exist. If the screening-level data found potential risks exist, the framework then requires further field studies, referred to as Tiers 2–3 studies, to better assess the pesticide’s risks to bee colonies in the real world. The court found that EPA admitted that the screening-level Tier 1 sulfoxaflor data triggered the need for further studies, and Dow thus submitted three additional Tier 2

458 806 F.3d 520 (9th Cir. 2015).
459 Id. at 528, 530.
460 Id. at 522.
461 Id. at 526–28.
462 Id. at 522.
463 Id. at 524.
464 Id. at 525 (“[W]hereas the Tier 1 analysis focuses on the effects of the insecticides on individual bees, Tier 2 and Tier 3 analyses attempt to measure the effect on the colony as a whole.”).
studies. Yet, EPA itself admitted that the additional Tier 2 studies, which suffered from various flaws and limitations, were “inconclusive” as to the effect of sulfoxaflor on colony health. Instead of requiring additional Tier 2 studies to evaluate sulfoxaflor’s risks to bees, EPA instead unconditionally registered sulfoxaflor use at a lower application rate than the registrant had sought, and with various proposed limitations.

The Court rejected EPA’s attempt to unconditionally register sulfoxaflor on those terms, finding that “[t]he record does not indicate the EPA had ever received any additional data on the effect of such measures.” The Court explained that once the requirements for additional data set by EPA were triggered, EPA lacked the discretion to proceed with registration without such additional data to support the registration decision. Instead, “EPA’s basis for unconditionally registering sulfoxaflor in the absence of sufficient data documenting the risk to bees does not hold up under its own rationale,” and thus, the Court vacated the pesticide registration, holding that EPA’s decision to move forward with unconditionally registering the insecticide without the data called for by EPA’s own testing framework violated FIFRA.

2. Natural Resources Defense Council/Center for Food Safety v. EPA (Nanosilver)

The Ninth Circuit’s decision in Natural Resources Defense Council v. U.S. Environmental Protection Agency (Nanosilver) marked the first instance in which courts have examined and reigned in EPA’s abuse of its conditional registration authority. In that case, environmental and consumer protection groups challenged EPA’s conditional registration of an antimicrobial pesticide (NSPW), containing the new active ingredient nanosilver. EPA approved “NSPW [a]s a materials preservative [to be] incorporated into plastic and textile products” to suppress the growth of harmful organisms such as bacteria and mold. While EPA had long registered silver as an antimicrobial pesticide, the new active ingredient nanosilver had a much smaller particle size, and as the Ninth Circuit

465 Id. at 525–27.
466 Id. at 526.
467 Id. at 526–27.
468 Id. at 527–28; see id. at 529 (noting that the data submitted by the registrant “did not support approval of sulfoxaflor at either the proposed maximum rate . . . or the reduced maximum rate”).
469 Id. at 531–32; id. at 531 (“We have previously held that we cannot allow the EPA to avoid its own regulations when actual measurements trigger risk concerns.”) (citing Natural Res. Def. Council v. EPA, 735 F.3d 873, 883–84 (9th Cir. 2013)).
470 Id. at 532–33.
471 Id. at 532.
472 857 F.3d 1030 (9th Cir. 2017).
473 See discussion infra Part III.C.
474 Nanosilver, 857 F.3d at 1034.
475 Id.
observed, this resulted in the new chemical “hav[ing] significantly different properties than conventional silver.”

Because of these different properties and the lack of nano-specific data, EPA conditionally registered NSPW under 7 U.S.C. § 136a(e)(7)(C), the conditional registration provision for new active ingredients. To conditionally register the new active ingredient, EPA must conclude, among other things that—despite lacking sufficient data for EPA to make the no “unreasonable adverse effect” finding necessary for unconditional registration—the registration of the new antimicrobial active ingredient would nonetheless be “in the public interest.” In its registration decision, EPA stated that conditionally registering nanosilver would be “in the public interest” because NSPW, which had a lower application rate and was less mobile than conventional-silver pesticides, “ha[d] the ‘potential’ to reduce the amount of silver released into the environment.”

On review, the Ninth Circuit found that EPA failed to substantiate its public interest finding that NSPW had the “potential” to reduce the amount of silver that is released in the environment. The court found that EPA’s public interest finding rested on two assumptions: 1) “that current users of conventional-silver pesticides will replace those pesticides with NSPW,” and 2) “that NSPW will not be incorporated into new products to the extent that such incorporation would actually increase the amount of silver released into the environment,” neither of which was supported by any evidence in the record. The court also found that if either assumptions turns out to be incorrect, rather than serving any public interest, “NSPW may increase the amount of silver released into the environment and contravene the identified public interest.”

In holding that EPA’s public interest finding lacked substantial evidence, the Court held, after discussing the legislative history of FIFRA’s conditional registration provisions, that the public-interest finding prerequisite for conditional registrations of new pesticide active ingredients “is an additional, ‘more stringent test’ that distinguishes conditional registration [of new active ingredients] from unconditional registration.” While acknowledging that under FIFRA’s substantial evidence standard, EPA need not “support a public-interest finding with ‘scientific certainty,’” the Court held that EPA was required to at least support the finding “with ‘substantial evidence when considered on the

476 Id.
477 Id. at 1035.
479 Id. § 136a(e)(7)(C); see discussion infra Part III.B.
480 Nanosilver, 857 F.3d at 1038.
481 Id. at 1040.
482 Id. at 1039–41.
483 Id. at 1040 (second emphasis added).
484 Id. at 1042 (quoting 123 Cong. Rec. 25,706 (1977)).
Additionally, the Court rejected EPA's argument that EPA could collect data to substantiate its public interest finding after granting conditional registration, holding that FIFRA plainly requires EPA to make the public interest finding "before granting conditional registration." The Court explained that it was not enough for EPA to simply say that a new "pesticide has the 'potential' to be in the public interest—especially where the pesticide also has the 'potential' to contravene the public interest.” Rather, because EPA's public interest finding of nanosilver was “only supported by bare assumptions,” EPA had failed to support the issuance of the conditional registration under FIFRA.

The Nanosilver decision is precedential in clarifying that the public interest requirement for conditional registrations of new pesticide active ingredients is an additional, more stringent test that EPA must support with substantial evidence. Crucially, the Court rejected EPA's "bare assumptions" that nanosilver would bring about a public benefit by replacing older, more toxic pesticide counterparts, a rationale that EPA has often relied on in its registration of newer pesticide active ingredients, without any data or evidence to suggest that pesticide users would actually switch over to the new, often more expensive, patented pesticide formulations. Post-Nanosilver, EPA is required to substantiate that conclusion with substantial evidence in the record.

3. National Family Farm Coalition v. EPA (Enlist Duo)

Pollinator I and Nanosilver both emphasize the need for EPA to substantiate its pesticide registration decisions with sufficient evidence before the agency in approving new pesticides, whether conditionally or unconditionally. On the other hand, the Ninth Circuit’s recent decision in National Family Farm Coalition v. U.S. Environmental Protection Agency (Enlist Duo) examined a different category of pesticide approvals, referred to as "me-too" registrations, which are pesticide uses similar to previously-registered uses of similar or identical pesticides. In Enlist Duo, the Ninth Circuit faced a challenge to a me-too product registration sold by the brand name Enlist Duo, which contains 2,4-D and glyphosate, two pesticide ingredients that had both been previously registered. Like dicamba in NFFC, Enlist Duo was specifically designed as a companion to corn, soy, and cotton crops that had been genetically

\[485\] Id. at 1041 (quoting 7 U.S.C. § 136n(b) (2012)).
\[486\] Id. at 1041–42.
\[487\] Id. at 1042.
\[488\] Id.
\[489\] Id. at 1038.
\[490\] 966 F.3d 893 (9th Cir. 2020).
\[492\] Enlist Duo, 966 F.3d at 904–05, 913.
engineered to withstand its application, allowing 2,4-D to be sprayed later in the season, over the top of the growing crops.493 As noted by the Ninth Circuit, Enlist Duo pesticide thus changed the use pattern of 2,4-D, but not that of glyphosate, which was already approved for later-season spraying on those crops.494

Environmental and farmer groups challenged the registration on multiple grounds under FIFRA, as well as the ESA, as discussed in Parts V.C and V.D. On review of the FIFRA claims, the panel largely upheld EPA’s conditional registration of the me-too pesticide.495 First, the panel held that the conditional registration standard for a me-too pesticide, which requires EPA to find that “the registration would not ‘significantly increase the risk of any unreasonable adverse effect on the environment.’”496 is a lower standard than the no “unreasonable adverse effect” finding required for unconditional registration because the scope of EPA’s review is limited to “only . . . evidence that bears on whether the new or additional use changes EPA’s original conclusion that the pesticide or active ingredient will ‘not generally cause unreasonable adverse effects.’”497 Nonetheless, the Court held that even under that standard, the me-too registration was unlawful because EPA admitted that it failed to assess how the destruction of milkweed in treated fields by Enlist Duo may affect the iconic monarch butterfly, whose population has been threatened by the loss of milkweed habitat in large part due to the prevalence of agricultural pesticide use.498

Although EPA argued in litigation that milkweed on crop fields would be destroyed by some other pesticide even without the Enlist Duo pesticide registration, the Court rejected this post-hoc litigation position.499 Significantly, the Court went on to explain that, even if EPA

493 See \textit{id.} at 904 (The petitioners in \textit{Enlist Duo} challenged the registration under both FIFRA and the ESA, but this Article focuses on the Court’s review of the FIFRA challenges).

494 \textit{Id.} at 905.

495 \textit{Id.} at 914.

496 \textit{Id.} at 913 (quoting 7 U.S.C. § 136a(c)(7)(A) (2018)).

497 \textit{Id.} at 916. Moreover, the Court found that EPA actually registered Enlist Duo according to the unconditional registration standard, finding that the pesticide would not result in unreasonable adverse effects on the environment. \textit{See id.} at 914 (“[T]he documents indicate EPA applied the broader ‘cause any unreasonable adverse effects’ standard for unconditional registrations.”). However, this holding also sheds light on the \textit{NFFC} decision for dicamba, since there the Court also addressed the not ‘significantly increase the risk of any unreasonable adverse effect on the environment’ standard, albeit for conditional new use registrations. \textit{NFFC}, 960 F.3d 1120, 1124 (9th Cir. 2020). In that case the panel held that EPA did not meet even this narrower and slightly easier (according to the \textit{Enlist Duo} panel) registration standard.

498 \textit{Enlist Duo}, 966 F.3d at 917; see \textit{Monarch Butterfly}, U.S. \textit{FISH & WILDLIFE SERV.}, https://perma.cc/M6TR-YBYG (last visited July 31, 2021) (determining that the monarch butterfly warranted protection under the ESA but declined to take action in light of other higher priorities and finding that “[p]esticide use can destroy the milkweed monarchs need to survive”).

499 \textit{Enlist Duo}, 966 F.3d at 917 (“Despite the intuitive appeal of EPA’s argument, we must reject it. EPA did not assert this rationale as a reason for declining to assess the destruction of milkweed on target fields, so neither can we.”).
had offered the justification as part of its registration decision, “it would likely be premised on legal error.”\footnote{Id.} This is because, according to the panel, that the milkweed would likely be destroyed by other pesticides merely goes to “suggest[,] that registering Enlist Duo may not be ‘unreasonable’ under FIFRA,” but “says nothing about whether an effect would be ‘adverse.’”\footnote{Id.} The Court emphasized that “EPA was required, under FIFRA, to determine whether any effect was ‘adverse’ before determining whether any effect on the environment was, on the whole, ‘unreasonable.’”\footnote{Id.} While the court’s clarification on this last point is dicta, it nonetheless has significant import in the context of judicial review of EPA’s administration of me-too pesticides going forward, since the very nature of me-too registration means that there are always other pre-existing pesticides that would carry the same risks as the proposed me-too pesticide. Under the rationale articulated by the Court in \textit{Enlist Duo,} EPA still needs to examine such risks, and determine whether or not they are adverse, then proceed to evaluate whether the level of risks presented by the me-too registration would be unreasonable to the environment as a whole.

The \textit{Enlist Duo} decision also raises another aspect of EPA’s pesticide registration authority, the registration review process, which is front and center in two ongoing cases before the Ninth Circuit described below.\footnote{See infra Part V.C.} As mandated by FIFRA, under registration review, EPA conducts periodic reviews of registered pesticides.\footnote{7 U.S.C. § 136a(g)(1)(A)(i) (2018).} After holding that EPA only needed to examine the increased risk caused the new 2,4-D use pattern, the Court went on to explain that “[t]his does not mean, of course, that new data about glyphosate will go unconsidered.”\footnote{\textit{Enlist Duo}, 966 F.3d at 918.} Rather, the Court pointed to the registration review process under FIFRA as the appropriate forum for EPA to analyze such risks, explaining that that “process serves as a backstop to ensure that pesticides do not remain registered once new data has shown them to be harmful to humans or the environment.”\footnote{Id.} Based on the same rationale, the Court also rejected one of petitioners’ arguments that EPA was required to consider the synergistic effects of the future potential of mixing Enlist Duo with glufosinate, another pesticide, in a common agricultural practice where different pesticides are mixed in the field before application, because any such arguments can be presented during the ongoing registration review processes for 2,4-D and glyphosate.\footnote{\textit{Id.} at 921.}

\footnote{Id.} \footnote{\textit{Id.} (quoting 7 U.S.C. § 136a(c)(5), (7) (2018)).} \footnote{Id.} \footnote{Id.} \footnote{Id.} \footnote{Id.} \footnote{\textit{Id.}} \footnote{\textit{Enlist Duo}, 966 F.3d at 918.}
C. The Next Chapter: Ongoing FIFRA Battlefields

Taken together, NFFC, Nanosilver, Pollinator I, and Enlist Duo show that, in spite of the historical deference that courts have afforded agencies on scientific and technical matters such as a pesticide registration,508 FIFRA’s “substantial evidence” standard is a “searching and careful” standard of judicial review.509 These cases teach that FIFRA’s registration standard requires that EPA substantiate its assumptions and assessments with substantial record evidence.510 The rulings in NFFC and Enlist Duo further add to that, and put the substantial evidence standard of review in the context of FIFRA’s “unreasonable adverse effect” substantive requirement.511 They clarify that, at a minimum, EPA must assess all risks—environmental, economic, and social.512 They also instruct that where EPA entirely fails to consider certain risks or substantially understate known risks, the resulting registration lacks substantial evidence and violates FIFRA.513 Similarly, where EPA relies on mitigation like use restrictions, it must grapple with record evidence and support the efficacy and practicability of those measures.514

That said, these cases do not fully address the level of detail EPA must provide to substantiate its pesticide registration action to quantify risks, or to support its conclusion that the risks are not unreasonable. Nor do the cases address EPA’s duties in the registration review context for older pesticides. Instead, these questions may be addressed in the next generation of ongoing cases concerning many of the same pesticides previously reviewed by the courts.

As mentioned previously, the ongoing sequel to the NFFC decision will examine whether EPA’s latest dicamba registration sufficiently cures the deficiencies in EPA’s prior risk assessment, and the court’s holding

508 See, e.g., Pollinator I, 806 F.3d 520, 533 (9th Cir. 2015). (Smith, J., concurring) (“[A] court’s deference must be at its highest when examining factual disputes that ‘implicate substantial agency expertise.’”) (quoting Marsh v. Or. Nat. Res. Def. Council, 490 U.S. 360, 376–77 (1988)); see Lands Council v. McNair, 537 F.3d 981, 994 (9th Cir. 2008) (en banc) (noting the special court deference “when questions of scientific methodology are involved”).

509 See Pollinator I, 806 F.3d at 533.

510 See, e.g., id. (explaining that “FIFRA has its own standard of review” and that pesticide registration must be “supported by substantial evidence when considered on the record as a whole”).

511 See Enlist Duo, 966 F.3d at 917 (finding that EPA did not violate FIFRA because “there is no such increase in the risk of unreasonable adverse effects because substantial evidence supports EPA’s conclusion that neither the initial 2014 registration of Enlist Duo—nor the subsequent approvals for new uses—will increase the overall use of glyphosate”).

512 Id. at 913.

513 See, e.g., id. at 917 (“Given the record evidence suggesting monarch butterflies may be adversely affected by 2,4-D on target fields, EPA, was required, under FIFRA, to determine whether any effect was ‘adverse’ . . . EPA’s failure to do so means that its decision was lacking in substantial evidence on this issue.”).

514 Id. at 917–18.
therein will be crucial to further define EPA's duties in conducting the risk-benefit assessment under FIFRA.

Sulfoxaflor, the bee-killing insecticide at issue in Pollinator I, is also having its second act. In 2019, EPA reapproved many of the sulfoxaflor uses vacated by the Pollinator I decision—uses on crops utilized by bees and pollinators therefore have the potential to harm them. The beekeeper petitioners in Pollinator I and other environmental organizations petitioned for review, challenging the 2019 sulfoxaflor use approvals under both FIFRA as well as the ESA. Specific to the FIFRA context, the Pollinator II case picks up where Pollinator I left off, and the petitions for review seek judicial review of the sufficiency of the additional Tier 2 studies that EPA relied upon in issuing the 2019 registration decision. The Pollinator II petitioners also rely on the Ninth Circuit’s ruling in NFFC to argue that EPA underestimated the risks of sulfoxaflor to non-honey bees, as well as the risks sulfoxaflor has on the environment as compared to alternative insecticides.

Two other ongoing FIFRA petitions for review bring into question EPA’s FIFRA duties in the registration review context. As discussed in Part V.B.iii, the Court in Enlist Duo rejected the petitioners’ challenge to EPA’s determination concerning the glyphosate component of Enlist Duo because, according to the court, any unreasonable adverse effects of glyphosate use would be addressed in EPA’s registration review of that pesticide. EPA issued an interim registration review decision—deemed “interim” because a final registration decision is still forthcoming—for glyphosate in January of 2020, after more than a decade of registration review that it started in 2009, and despite admitting that the agency still lacked data necessary to make a final decision.

Environmental and farmworker groups petitioned for review to the Ninth Circuit based on

515 See U.S. Env’t Prot. Agency, Decision Memorandum Supporting the Registration Decision for New Uses of the Active Ingredient Sulfoxaflor on Alfalfa, Cacao, Citrus, Corn, Cotton, Cucurbits, Grains, Pineapple, Sorghum, Soybeans, Strawberries and Tree Plantations and Amendments to the Labels 2–3 (July 12, 2019) (discussing EPA granting use of sulfoxaflor and Pollinator Stewardship Council’s petition for review of the registration).

516 Petition for Review at 1–2, Pollinator Stewardship Council v. U.S. Env’t Prot. Agency, No. 19-72280 (9th Cir. Sept. 6, 2019); Ctr. for Food Safety v. U.S. Env’t Prot. Agency, No. 19-72109 (9th Cir. Aug. 20, 2019) (collectively, the Pollinator II cases) [hereinafter Petition for Review]. Significantly, a little over a year after petitioners filed the Pollinator II petitions for review, in a motion to the Court, EPA admitted that it had failed to comply with its consultation duties under the ESA prior to approving sulfoxaflor use.

517 See Petition for Review, supra note 516, at 1–2, 11–12 (citing the Tier II studies in attachments to assess the risk to honeybees).

518 Petitioners’ Opening Brief at 41, Pollinator II, No. 19-72280 (9th Cir. Aug. 31, 2020).

519 Enlist Duo, 966 F.3d 893, 918 (9th Cir. 2020) (citing 7 U.S.C. § 136a(q) (2018)).

521 Petitioners are Rural Coalition, Organización en California de Líderes Campesinas, Farmworker Association of Florida, Beyond Pesticides, and Center for Food Safety.
EPA’s failure to comply with FIFRA and the ESA. EPA issued a similar interim registration decision concerning another pesticide, atrazine, a toxic herbicide that EPA itself had classified for “restricted use” given its unreasonable adverse effects on the environment, again because EPA openly admits it still lacked all the requisite data to make a final registration review determination. In both instances, EPA also issued the interim registration decisions without completing the consultation required under the ESA. The Ninth Circuit’s decisions in these two interim registration challenges would thus determine with more precision what is required of EPA under FIFRA and the ESA when undertaking pesticide registration review.

D. Pesticide Litigation Outside of FIFRA

It is worth noting two other litigation battlegrounds, outside of the FIFRA context, that have profound impacts on how pesticides are regulated and used in U.S. agriculture. First, as discussed in Part II, because pesticides indiscriminately harm not only the targeted pests, but other living organisms, pesticides have been identified as one of the major contributing factors in the significant decline of our nation’s federally protected endangered and threatened species. Yet, as the cases amply demonstrate, EPA has continued to disregard the potential harm of pesticide exposure to federally protected species in its administration of FIFRA, in violation of the ESA. Second, the vast amount of crop and health damage suffered by farmers and pesticide users have led those users to look to private courses of action such as product liability claims, to hold the agrochemical conglomerates accountable. While these cases are outside of the main focus of this Article, we briefly summarize their import below.

523 7 U.S.C. § 136a(d)(1)(C) (2018) (“restricted pesticides” are so classified because EPA determined that their use “may generally cause, without additional regulatory restrictions, unreasonable adverse effects on the environment, including injury to the applicator”).
525 Id. at 3, 122–23.
1. Endangered Species Act

The ESA is “the most comprehensive legislation for the preservation of endangered species ever enacted by any nation.”528 Congress “ma[de] it abundantly clear that the balance has been struck in favor of affording endangered species the highest of priorities.”529 Section 7(a)(2) of the ESA reflects Congress’s intent “to give endangered species priority over the ‘primary missions’ of federal agencies.”530 It mandates that “[e]ach Federal agency shall . . . insure” its action—including any pesticide registration action—“is not likely to jeopardize the continued existence of any endangered species . . . or result in the destruction or adverse modification of habitat of such species.”531 Accordingly, Section 7 of the ESA establishes a process requiring EPA to evaluate a pesticide’s effects “in consultation with and with the assistance of the” agencies Congress designated as having expertise in determining effects on endangered species: U.S. Fish and Wildlife Service and National Marine Fisheries Service (the Expert Agencies).532 The consultation process to assess a pesticide’s effects is integral to “insuring” EPA implements the ESA’s substantive protections for imperiled species.533 The first step in the Section 7(a)(2) process requires EPA to determine whether the registration “may affect” any listed species or designated critical habitat.534 If it may, EPA then must consult.535

Courts have repeatedly affirmed that compliance with the ESA’s consultation mandates is an indispensable part of EPA’s pesticide registration process.536 Nevertheless, EPA has continued to evade its ESA consultation duties in registering pesticides, failing to engage in consultation even after finding “may affect” in its risk assessment of a pesticide registration, only to concede later in litigation of its legal violation.537 Even after such admissions in court, rather than committing to cure its ESA violation as expeditiously as possible, EPA instead throws its hands in the air, and points to the ever-growing backlog of ESA

529 Id. at 194.
530 Id. at 185.
533 Thomas v. Peterson, 753 F.2d 754, 764 (9th Cir. 1985), abrogated on other grounds by Cottonwood Envt’l Law Ctr. v. U.S. Forest Serv., 789 F.3d 1075 (9th Cir. 2015).
535 Id.
536 Wash. Toxics Coal. v. U.S. Envt’l Prot. Agency, 413 F.3d 1024, 1032 (9th Cir. 2005) (“[EPA] cannot escape its obligation to comply with the ESA merely because it is bound to comply with [FIFRA].”)
consultations on older pesticides that the agency has yet to complete.538 To give just one example of several, in \textit{Ellis v. Housenger},539 a district court in the Northern District of California held that EPA violated the ESA when it issued pesticide registrations for several bee-harming pesticides where EPA conceded in summary judgment that “it has not consulted [the Expert] [A]gency nor made a ‘no effect’ determination.”540

As a result, these ESA violations often end up being resolved through a lengthy settlement process, often involving EPA and the pesticide registrants, whereby the plaintiffs try to stop or reduce use of the challenged pesticide while negotiating a reasonable timeline for EPA to belatedly comply with the ESA.541 As a result, EPA and the registrants agreed to remove some of the pesticide products from the market while EPA engages in making an effects determination within the timeframe set by the parties via settlement.542 Similarly, in the ongoing \textit{Pollinator II} litigation, more than a year after the petitioners sought review of EPA’s sulfoxaflor registration decision, EPA admitted that it had failed to abide by the ESA’s consultation mandates, but stated that it would not be able to even make the initial ESA effects determination for another seven years due to its backlog of ESA violations.543

Nor is the backlog of ESA consultations for preexisting pesticides shrinking. In issuing interim registration decisions on glyphosate and

539 252 F. Supp. 3d 800 (N.D. Cal. 2017).

542 See Stipulated Injunction and Order, Ctr. for Biological Diversity v. Johnson, No. 02-01580-JSW (N.D. Cal. Oct. 20, 2006) (showing the agreement between two parties to limit the use of a random product).

543 Motion for Voluntary Remand Without Vacatur at 6, \textit{Ctr. For Food Safety}, No. 19-72109 (9th Cir. Oct. 26, 2020), No. 51-1; Appendix to Motion for Voluntary Remand Without Vacatur at 17, \textit{Ctr. For Food Safety}, No. 19-72109 (9th Cir. Oct. 26, 2021), No. 51-2.
atriazine. EPA confessed that it had not made ESA determinations concerning either pesticide, but nonetheless issued the interim registration decisions to allow the pesticide uses to continue without any ESA compliance on the decision. Whether that decision violates the ESA is one of the issues that will be adjudicated by the Ninth Circuit in the ongoing glyphosate interim registration challenge.

To address continuing disagreements over the consultation process, EPA and the Expert Agencies requested that the National Academy of Sciences (Academy) evaluate the best scientific approach for assessing the effects of registrations on endangered species. The resulting 2013 report by the Academy pointed out that EPA’s FIFRA risk assessment matrix is “not scientifically defensible for assessing the risks to” federally protected species. This conclusion is understandable, since FIFRA and the ESA have completely different risk thresholds. As discussed supra Part III.A, under FIFRA, EPA is tasked with evaluating whether a potential pesticide risk rises to the level of “unreasonable effect.” On the other hand, the ESA’s “may affect” standard is extremely low: “[A]ctions that have any chance of affecting listed species or critical habitat—even if it is later determined that the actions are ‘not likely’ to do so—require at least some consultation under the ESA.” The Academy’s report made clear that any potential exposure to a pesticide is a “may affect” trigger under the ESA, and called for EPA to adopt a more probabilistic approach in assessing pesticide risks to federally protected species. According to the Academy, if there is any spatial overlap between a pesticide’s potential use and the habitats of listed species, EPA should at least informally consult the Expert Agencies. Following the Academy’s report, EPA and the Expert Agencies jointly published a guidance document outlining how they would conduct pesticide consultations going forward. Consistent with the report, the guidance

544 See discussion supra Part V.C.
546 NAT’L RESEARCH COUNCIL ET AL., ASSESSING RISKS TO ENDANGERED AND THREATENED SPECIES FROM PESTICIDES (Nat’l Academies Press 2013), https://perma.co/7LV2.8TDT.
547 Id. at 15 (emphasis added).
548 See discussion supra Part III.A.
549 Karuk Tribe of Cal. v. U.S. Forest Serv., 681 F.3d 1006, 1027 (9th Cir. 2012) (emphasis added).
550 NAT’L RESEARCH COUNCIL ET AL., supra note 546 at 31 (tbl. 2–1), 148–50, 152.
551 Id. at 9.
document provides that to comply with the ESA in registering pesticides, EPA must conclude that a pesticide “may affect” any species or critical habitat if it finds species or habitats that overlap with the “potential [pesticide] use sites” and “area of potential effects in and around use sites.”553 And when there is a “may affect,” EPA must at least engage in informal consultation—to assess in conjunction with and requiring the concurrence of the Expert Agencies—the degree of impacts on protected species, and if necessary beyond that, formally consulting the Expert Agencies to implement protective measures and minimize impacts.554

While the NFFC decision on dicamba did not reach the petitioners’ very similar ESA claims, the Enlist Duo decision555 did examine EPA’s ESA consultation duties in light of the Academy’s recommendations and EPA’s subsequent adoption of them. As in NFFC, the Enlist Duo case involves a situation where EPA unilaterally concluded that there was “no effect” on endangered species by relying on its much-criticized FIFRA risk assessment framework to conclude that endangered and threatened species would not be exposed to the pesticide at levels sufficient to, under EPA’s FIFRA framework, have an “effect.”556 Petitioners challenged the “no effect” finding by EPA, in addition to FIFRA claims discussed supra Part IV.A.iii. The petitioners argued the ESA consultation duty was triggered because EPA’s own preliminary FIFRA assessment had found that the pesticide Enlist Duo “may affect” hundreds of endangered species, but EPA subsequently reached a “no effect” finding after unilaterally adopting mitigation measures, such as downwind buffer and other use restrictions, that the agency claimed would eliminate effects on species.557 The petitioners also argued that EPA’s reliance on its FIFRA risk assessment matrix, which was rejected by the Academy’s report, violated the ESA’s mandate that agencies “use the best scientific and commercial data available.”558

While conceding that EPA’s FIFRA matrix was criticized by the Academy, the majority in Enlist Duo upheld EPA’s “no effect” finding.559 The Court stated that the Academy recognized that transition from EPA’s FIFRA matrix to the probabilistic approach, if recommended, would require new data to be generated, and upheld EPA’s decision to continue utilizing its current FIFRA risk assessment matrix, explaining that the best scientific data requirement “does not require the agency to conduct

553 INTERIM APPROACHES FOR NATIONAL-LEVEL PESTICIDE ENDANGERED SPECIES ACT ASSESSMENTS BASED ON THE RECOMMENDATIONS OF THE NATIONAL ACADEMY OF SCIENCES APRIL 2013 REPORT, supra note 552, at 4–5.
554 Id. at 1–2, 7.
555 See discussion supra Part IV.A.
557 Enlist Duo, 966 F.3d 893, 924 (9th Cir. 2020).
558 Id. at 925.
559 Id. at 923–26.
new tests or make decisions on data that does not yet exist.”560 In so holding, the Court relied on the fact that EPA had begun implementing the new approach in selected pesticide registration reviews and concluded that EPA’s utilization of its inappropriate FIFRA matrix “is a scientific judgment” we do not expect to reoccur given EPA’s commitment to gather the data necessary to implement [the Academy’s approach] going forward.”561

Crucially, Judge Watford dissented from the plurality panel’s ESA ruling, explaining he would have held that EPA had violated the ESA’s “best scientific data available” mandate when it assessed Enlist Duo’s risks to endangered species using its unreliable FIFRA matrix.562 His dissent points out that the Enlist Duo holding could set a dangerous precedent that effectively incentivizes agencies not to implement the necessary scientific method to obtain the necessary data, directly contradicting Congress’s intent to require federal agencies to use the best scientific data available in assessing risks to endangered species.563

For now, it remains to be seen what will come of these mixed decisions. On the one hand, courts have held EPA accountable when the agency entirely fails to make any effects determination prior to registering a pesticide.564 On the other hand, under Enlist Duo, for at least a short time until EPA generates the necessary data to apply the National Academy of Sciences’ methodology, EPA can continue to rely on its FIFRA risk assessment matrix to find “no effect,” despite recognition by scientists and the Court that the FIFRA matrix is not scientifically defensible for protecting endangered species. Fortunately, as the Enlist Duo decision recognized, the agency already possesses much of the data necessary to conduct the probabilistic assessment called for by the Academy.565 The existence of such data should make it difficult, if not impossible, for EPA to rely on FIFRA’s risk-benefit standard to evade the ESA mandate to prioritize protection of endangered species above all else.566

560 Id. at 926 (quoting Ctr. for Biological Diversity v. U.S. Fish & Wildlife Serv., 807 F.3d 1031, 1047 (9th Cir. 2015)).

561 Id.

562 Id. at 933 (Watford, J., dissenting).

563 Id. Petitioners in Enlist Duo sought rehearing en banc based in part on the rationale articulated in Judge Watford’s dissent, but the Ninth Circuit denied the rehearing request. Order at 2, Enlist Duo, 966 F.3d 893 (No. 17-70810), 2020 U.S. App. LEXIS 36274, at *2 (9th Cir. Nov. 18, 2020).

564 See supra note 540 and accompanying text.

565 See, e.g., Enlist Duo, 966 F.3d at 926 (explaining that, moving forward, “EPA and the consultation agencies agreed that they would implement [the Academy’s] proposed approach in stages”).

2. State Product Liability Claims

Another important part of this story is federal pesticide regulation’s interaction with state law regulation of pesticides and state law-based claims like product liability. FIFRA’s scheme is one of cooperative federalism, leaving ample room for state action in both forms.567 While the EPA label is preemptive, states (and even local governments, if not preempted by their given states)568 can regulate the use of pesticides.569 This strong presumption against preemption reflects the historical role that states had in pesticide regulation and extends to state-based causes of action, such as defective product claims.570

As one might imagine, the dicamba drift crisis spawned hundreds if not thousands of farmer plaintiffs suing for damages. In the first, Bader Farms v. Monsanto Co.,571 Bader Farms, a Missouri peach orchard, experienced significant drift damage from neighboring crop fields.572 In early 2020, a jury found in Bader’s favor on all counts, awarding $15 million in actual damages and $250 million in punitive damages.573 It found Monsanto and BASF liable for the negligent design of their products and failure to warn.574 It also found that the companies conspired to create an “ecological disaster” of off-target pesticide movement and damage to increase profits.575 Contrary to their arguments in the NFCC litigation and EPA’s registration decision bases, approximately 180 discovery documents showed that Monsanto knew its

567 Angelo, supra note 50, at 141–42.
569 Bates v. Dow Agrosciences LLC, 544 U.S. 431, 434, 441–44 (2005) (establishing that a state rule is preempted only if it meets two conditions: 1) it is a requirement “for labeling or packaging,” and 2) that labeling or packaging requirement is “in addition to or different from those required under [the FIFRA] subchapter” (emphasis omitted)).
570 Id. at 449 (noting that states’ statuses as separate sovereignties lend against preemption of causes of action under state law).
575 See id. (explaining that “the jury found that the defendants were acting in a joint venture and in a conspiracy”); Corinne Ruff, Monsanto, BASF Will Pay $250 Million in Punitive Damages in First Dicamba Trial, ST. LOUIS PUB. RADIO (Feb. 15, 2020), https://perma.cc/T4F9-QK8M.
product would move off-field and cause harm.576 Monsanto projected thousands of drift incidents and prohibited testing of dicamba’s drift properties to more easily obtain EPA registration.577 Also, contrary to their arguments in the \textit{NFFC} litigation, documents conceded to drift occurring despite label-compliant application and drift-caused yield loss.578 And the jury rejected Monsanto’s defense that damage was because of farmer misapplication, not its pesticide.579

Consolidated cases of hundreds, if not thousands, of other farmers followed.580 In December of 2020, Bayer entered into a settlement with damaged soybean farmers for $300 million.581 Growers with non-soybean crop or plant injury in the multi-district litigation are in the process of settling their claims separately at the time of writing.582 However several

576 See Johnathan Hettinger, Reporter’s Notebook: Five Key Takeaways From Trial of Peach Farmer’s Lawsuit vs. Bayer, BASF; MIDWEST CTR. FOR INVESTIGATIVE REPORTING (Feb. 14, 2020), https://perma.cc/552B-P2GH (“While BASF was telling farmers there would be no yield impacts from dicamba drift in 2017, the company was privately telling pesticide applicators that any drift they caused could cause yield loss, according to a training document for employees investigating dicamba drift complaints.”); Carey Gillam, Revealed: Monsanto Predicted Crop System Would Damage US Farms, GUARDIAN (Mar. 30, 2020), https://perma.cc/V7UZ-GC9Z (“Monsanto and BASF sought to keep most of the discovery documents they turned over in the dicamba litigation designated confidential. Roughly 180 have been unsealed and were cited at the Bader trial.”). While damage included the 2015/2016 season from older dicamba formulations, it dramatically increased in 2017, see Hettinger, supra 576, after EPA’s approval of the Monsanto and BASF pesticides at issue here. EPA, 2018 DICAMBA REGISTRATION DECISION, supra note 122, at 4–5 tbl.2.

577 See Hettinger, supra note 576 (“In 2015, Monsanto decided to ‘pull back’ on testing to allow dicamba to have a ‘clean slate’ because federal regulators were paying attention to the new weed killer’s potential to contaminate other fields, according to an email from Dr. Tina Bhakta, who, in her role as global chemistry expansion lead for Monsanto, was responsible for obtaining EPA registration for the weed killer.”).

578 See id. (noting that documents presented in court indicated that even if labels were followed, there was risk of drift, despite “Monsanto and BASF officials testifying] that the new versions of dicamba do not cause any ‘adverse’ effects when used according to the label”).

579 See Gillam, supra note 576 (explaining that the jury assessed punitive damages against Monsanto and BASF despite the companies’ assertions that the “products are safe and effective when used correctly”).

580 See Conditional Transfer Order (CTO–13), supra note 571, at 1–2; Johnathan Hettinger, For Dicamba Lawsuits, Bader Verdict is Just the Beginning, MIDWEST CTR. FOR INVESTIGATIVE REPORTING (Feb. 20, 2020), https://perma.cc/W2CK-LHBM (“The companies face at least 130 lawsuits over dicamba. Many of those seek to be class-action lawsuits that would represent the thousands of farmers – largely growers of non-resistant soybeans but also specialty crop farmers – whose fields have allegedly been damaged.”).

581 Emily Unglesbee, Dicamba Settlement is a Go, PROGRESSIVE FARMER (Dec. 17, 2020), https://perma.cc/3YUZ-GH1T; see also Emily Unglesbee, Dicamba Injury Payments, PROGRESSIVE FARMER (June 26, 2020), https://perma.cc/5DUT-6M8J (“Bayer agreed to pay up to $300 million to soybean producers who suffered yield losses to dicamba damage at any time from 2015 through 2020.”).

582 See Unglesbee, Dicamba Injury Payments, supra note 581 (“Another $100 million in the settlement will go toward settling non-soybean injury claims, as well as paying other costs incurred during litigation, such as attorney’s fees, bringing the total settlement to $400 million.”).
new dicamba drift damage lawsuits on more recent harm were filed in summer 2021.583

The dicamba class action settlement was part of a proposed glyphosate class action settlement by Bayer,584 attempting to clean up several of its Monsanto liabilities at once. There are currently also thousands of lawsuits against Monsanto/Bayer, by more than 100,000 plaintiffs, alleging cancer from glyphosate exposure.585 Monsanto has lost all three bellwether trials.586 These cases involve people who used glyphosate at home or at work, with each plaintiff later developing non-Hodgkin lymphoma. Following extensive jury trials, these plaintiffs were awarded over $2 billion in compensatory and punitive damages combined because glyphosate was a “substantial factor” in causing their cancers, and Monsanto failed to warn that its glyphosate-based pesticides could cause cancer.587 To settle the remaining non-Hodgkin lymphoma cases, Bayer agreed to a proposed massive $10 billion settlement, one of the largest settlements ever in U.S. civil litigation.588 The proposed settlement did cover at least 30,000 claims from plaintiffs who did not join the settlement.589 Additionally, Bayer would not agree to include a warning about increased risk of cancer on any glyphosate product

583 Emily Unglesbee, New Dicamba Lawsuits, PROGRESSIVE FARMER (June 4, 2021), https://perma.cc/6XEK-UGDQ.
584 See id. (“Some more details are emerging on Bayer’s $400 million settlement for dicamba injury claims, announced Wednesday amid a larger $1 billion settlement mostly focused on glyphosate litigation.”).
585 Carey Gillam, Bayer Backs Away From Plan to Contain Future Roundup Cancer Claims, U.S. RIGHT TO KNOW: MONSANTO ROUNDUP & DICAMBA TRIAL TRACKER (July 8, 2020), https://perma.cc/UN7G-ZBJT (“More than 100,000 people in the United States claim exposure to Monsanto’s glyphosate-based Roundup herbicides caused them to develop non-Hodgkin lymphoma (NHL) and that Monsanto long knew about and covered up the cancer risks.”).
587 Carey Gillam, Monsanto Ordered to Pay $2 Billion to Cancer Victims, U.S. RIGHT TO KNOW: MONSANTO ROUNDUP & DICAMBA TRIAL TRACKER (May 13, 2019), https://perma.cc/3LD8-N9BT (“A California jury ordered Monsanto to pay just over $2 billion in punitive and compensatory damages to a married couple who both developed non-Hodgkin lymphoma they say was caused by their many years of using Roundup products.”); Carey Gillam, Closing Arguments Today, Jurors to Deliberate Damages for Cancer Caused by Roundup, U.S. RIGHT TO KNOW: MONSANTO ROUNDUP & DICAMBA TRIAL TRACKER (Mar. 26, 2019), https://perma.cc/2W7R-59EL (explaining that the “month-long trial . . . recorded a first phase jury verdict finding Roundup was a ‘substantial factor’ in causing Hardeman’s non-Hodgkin lymphoma”).
589 Id.
labels. The overseeing district court judge heavily criticized the first iteration in summer 2020 for, among other things, attempting to bind not just current but also future plaintiffs, and it was subsequently scuttled; the parties filed a second version in early February 2021, but it is also under fire as creating a dangerous precedent. Sure enough, the district court judge rejected Bayer’s proposal, calling it “clearly unreasonable.” Now, Bayer has committed to removing glyphosate ingredients from the U.S. residential market. This leaves in place supply for agricultural uses.

In the meantime, the Ninth Circuit recently affirmed on appeal one of those bellwether cases, Hardeman v. Monsanto Co. At the district court, Mr. Hardeman won an $80 million verdict, with the jury finding that the weedkiller was a “substantial factor” in causing his non-Hodgkin lymphoma and that Monsanto should be held liable for its failure to warn that Roundup may cause cancer. The Ninth Circuit held that FIFRA does not preempt failure-to-warn claims because FIFRA itself states that “[i]n no event shall registration of an article be construed as a defense” against a FIFRA violation and that registration under FIFRA only serves as evidence that labeling and packaging comply with the statute. The Court found that, according to Bates v. Dow Agrosciences, Hardeman’s state failure-to-warn claims were “equivalent to” and ‘fully consistent with’ FIFRA and therefore not expressly preempted.” Absent a grant of certiorari and reversal by the Supreme Court of well-established preemption doctrine including Bates, this groundbreaking decision confirms that people harmed by future pesticide exposures will have a course of action against pesticide manufacturers for failing to adequately warn users of the risks involved with handling these chemicals.

More generally, the robust dicamba crop damage and glyphosate cancer class action litigation illustrate the important regulatory backstop role that state-law claims can play, theoretically providing strong economic liability incentives to companies not to cut health and safety corners. But they also underscore the inherent weakness in those types of litigation: they are always necessarily ex post facto and mainly financial, and thus cannot address irreparable types of injuries, like environmental

590 Id.
595 216 F. Supp. 3d 1037 (N.D. Cal. 2016), aff’d, 997 F.3d 941 (9th Cir. 2021).
596 Julia Jacobs, Monsanto Ordered to Pay $80 Million in Roundup Cancer Case, N.Y. TIMES (Mar. 27, 2019), https://perma.cc/ZH2Y-QZDB.
599 Hardeman, 997 F.3d at 958 (citing 544 U.S. at 449).
and health harms, before they happen. No amount of money can cure Mr. Hardeman’s cancer. And no amount of money can make up for the loss of an endangered plant or pollinator from pesticide drift, or a farmer’s fundamental right to choose what seeds she plants.

Accordingly, most relevant here, the robust state-law based action taking place reveals the regulation weaknesses at the center of this Article: they are needed in part because of how significantly EPA has failed at its job and how weak the registration approval process is. Pesticides that cause the problems at issue in the glyphosate and dicamba class action litigation should never have been approved in the first place, at least not in the form and manner they were, but they were so approved. As such, their very existence and necessity reiterates the urgent need for regulatory reform and improvements.

VI. CONCLUSION

For far too long, EPA has constricted its FIFRA mandate and shirked its ESA duties, approving pesticides in manners that have not protected public health or the environment. When challenged, EPA has sought refuge in the pesticides’ scientific complexity and the reflexive tendency of courts to defer to agencies. However, the recent cases discussed in this Article have collectively breathed some much needed life back into FIFRA’s “no unreasonable adverse effect” registration standard, as well as given new teeth to the substantial evidence standard of judicial review. With the caveat that nothing short of legislative and regulatory overhaul is needed, at a minimum these cases have winnowed some of the oversight loopholes and shored up some of the regulatory weaknesses that previously allowed EPA to greenlight pesticides without actually ascertaining that their use would not result in “unreasonable adverse effects on the environment” by “taking into account the economic, social, and environmental costs and benefits” of the pesticide use, as FIFRA mandates.600

To that end, it is illuminating to close by overlaying NFFC and the other decisions and their various holdings with Part II’s discussion of EPA registration weaknesses. One such major loophole is conditional registrations.601 Taken together, the Ninth Circuit’s recent holdings in Nanosilver, NFFC, and Enlist Duo set a higher bar—than the previous non-existent one—that EPA must clear to conditionally register pesticides. Nanosilver gives meaning for the first time to the statutory “public interest finding” requirement for conditional registrations of new active ingredients,602 clarifying that the public interest finding is an additional determination and instructing that EPA must support any

601 See U.S. Gov’t ACCOUNTABILITY OFFICE, supra note 89, at 37 (discussing EPA’s over-use of conditional registrations).
602 See 7 U.S.C. § 136a(c)(7)(C) (permitting the grant of a conditional registration if “use of the pesticide is in the public interest”).
such public interest determinations with record evidence. Further, *Enlist Duo* clarified that the no “significant increase” to “the risk of [any] unreasonable adverse effects” on the environment test for conditional registrations of me-too pesticides and new uses of previously-registered pesticides is a different and somewhat narrower standard than the “no unreasonable adverse effect on the environment” test for unconditional registration. Yet concurrently, the *NFFC* decision demonstrated the breadth of the types of effects that EPA still must consider, analyze, and support with substantial evidence, and that EPA can fail to do so, even under that less stringent standard. An additional fundamental flaw has been EPA’s failure to grapple with, or even acknowledge, the true costs or risks of registrations. In that regard, the *NFFC* precedent fleshes out the risk side of the FIFRA’s risk-benefit analysis and underlines that the textual mandate to EPA for “unreasonable adverse effect on the environment” includes not just environmental effects, but also social and economic ones. These economic effects include the economic costs to individual farmers suffering crop damage from pesticide drift and the broader anti-competitive market costs resulting from the approval of pesticide use on patented GE seeds. It also includes the social effect of pesticide use on rural and farming communities. EPA must examine these effects, must quantify them when there is record evidence for so doing, and must support its conclusion about whether they are reasonable in conjunction with the purported benefits of the pesticide registration, with substantial evidence in the record.

The same goes for EPA’s lapses when it comes to environmental and human health costs, data, and adverse effects of pesticides. *Pollinator I* and *Enlist Duo* both emphasize EPA’s duties to examine adverse effects to non-target species—honey bees in the case of *Pollinator I* and monarch butterflies in the case of *Enlist Duo*—and support the agency’s conclusion with substantial evidence. The *Nanosilver* decision addresses human health effects, requiring EPA to examine critically the risks to the public at large before it conditionally approves new pesticide active ingredients. One singular weakness of registration has been EPA’s reliance on regulation through label instructions rather than use limitations. The *NFFC* decision for the first time requires EPA to support with substantial evidence the efficacy and practicability of its labels and consider whether or not farmers can follow them in real-world farming conditions. It will

603 *Nanosilver*, 857 F.3d 1030, 1042 (9th Cir. 2017).
604 *Enlist Duo*, 966 F.3d 893, 914 (9th Cir. 2020).
605 *NFFC*, 960 F.3d 1120, 1142 (9th Cir. 2020).
606 See U.S. GOV’T ACCOUNTABILITY OFFICE, supra note 89, at 32 (explaining how several respondents expressed concern over new use of the pesticide without complete data or full rigorous review and how EPA might miss problems caused by the new use).
607 Id.
608 See discussion supra Part IV.B.6.c.iv (EPA’s reliance on label instructions makes actual regulation difficult because label instructions have been confusing for farmers to follow and comply with).
no longer be enough for EPA to make a finding of “no unreasonable adverse effects” predicated on mitigation the agency assumes but has not assessed and supported.

Another huge problem has been the conflict and inconsistency between EPA’s registration of pesticides under FIFRA and its duties under the ESA. EPA’s methodology and approach for common species is not scientifically defensible for endangered species, nor does EPA have the expertise alone to assess harms to them. However, a growing body of cases have established EPA can no longer flout its ESA duties for pesticide decisions, must comply with both statutes in making such decisions, and must use ESA metrics, not FIFRA metrics, for ESA decisions.

Finally, EPA has escaped accountability and transparency for many of its regulatory shortcomings, hiding in the weeds of agency deference. Judge Smith’s concurrence in Pollinator Stewardship I specifically addressed the rigor of substantial evidence review. The NFFC decision provided a meticulous review of the administrative record, holding repeatedly where EPA’s decision was flatly contrary to the evidence before the Court. Even in the Enlist Duo decision largely upholding the registration, the panel carefully reviewed and rejected the agency’s argument regarding impacts on monarch butterflies. All of these cases show the growing strength of substantial evidence judicial review.

Much, much more is needed, including programmatic legislative and regulatory action. And in the interim, there is plenty still up in the air. But the judicial winds seem to have shifted, blowing a gathering storm of long-overdue and urgently needed improvements, for the betterment of health and environmental protection. EPA would do well to catch the drift.

609 See discussion supra Part V.D (discussing EPA’s failure to meet its ESA duties when registering pesticides under FIFRA).
610 See discussion supra Part V.D.
611 See supra notes 536–540 and accompanying text.